BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 119-128; DOI 10.21519/0234-2758-2021-37-6-119-128
N.YU. Yudina1, M.G. Zaitsev1, V.A. Arlyapov1, V.A. Alferov1, O.N. Ponamoreva1, and A.N. Reshetilov1,2*

A Biosensor for Express Assessment of Integral Toxicity of Polymer- and Textile-Based Products

1Тula State University, Tula, 300012, Russia
2Pushchino Scientific Center for Biological Research Federal Research Center, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia


*anatol@ibpm.pushchino.ru
Received - 20.05.2021; Accepted - 18.10.2021

REFERENCES

1. Obshchaya toksikologiya. Pod red. A.O. Loyta. SPb.: ELBI-SPb, 2006, 224

2. GOST 32426-2013 Metody ispytaniy khimicheskoy produktsii, predstavlyayushchey opasnost' dlya okruzhayushchey sredy. Ispytaniye ryaski na ugneteniye rosta. Vveden v deistvie Prikazom federalnogo agentstva po tehnicheskomu regulirovaniyu I metro;ogii ot 22 noyabria 2013 g N 778-st

3. ГОСТ 31674-2012 Корма, комбикорма, комбикормовое сырье. Методы определения общей токсичности. GOST 31674-2012 Korma, kombikorma, kombikormovoye syr'ye. Metody opredeleniya obshchey toksichnosti. Vveden v deistvie Prikazom federalnogo agentstva po tehnicheskomu regulirovaniyu I metrologii ot 29 noyabria 2012 g. N 1477-st

4. ГОСТ 32075-2013 Материалы текстильные. Метод определения токсичности. GOST 32075-2013 Materialy tekstil'nyye. Metod opredeleniya toksichnosti. Vveden v deistvie Prikazom federalnogo agentstva po tehnicheskomu regulirovaniyu I metrologii ot 11 iunia 2014 g. N 586-ст

5. Bilal M., Iqbal H.M.N., Microbial-derived biosensors for monitoring environmental contaminants: Recent advances and future outlook. Process Saf. Environ. Prot., 2019, 124, 8-17. doi.org/10.1016/j.psep.2019.01.032

6. Nigam V.K., Shukla P. Enzyme based biosensors for detection of environmental pollutants-a review. J. Microbiol. Biotechnol., 2015, 25(11), 1773-1781. doi.org/10.4014/jmb.1504.04010

7. Zhou T. Han H., Liu P., et al. Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors, 2017, 17(10), 2230. doi.org/10.3390/s17102230

8. Gao G., Qian J., Fang D., et al. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal. Chim. Acta, 2016, 924, 21-28. doi.org/10.1016/j.aca.2016.04.011

9. Bosch M.E., Sánchez A.J.R., Rojas F.S., Ojeda C.B. Recent development in optical fiber biosensors. Sensors, 2007, 7, 797-859. doi.org/10.3390/s7060797

10. Shemshedinova E. Sh., Abduramanova E. R., Morozkina E. V., Katsev A. M. Luminescent whole-cell biosensors in detection of environmental contaminants (review). Theoretical and Applied Ecology, 2020, 2, 6-13.

11. Arlyapov V.A, Yudina N.Yu., Asulyan L.D, et al. BOD biosensor based on the yeast Debaryomyces hansenii immobilized in poly(vinyl alcohol) modified by N-vinylpyrrolidone. Enzyme Microb. Technol., 2013, 53, 257-262. doi.org/10.1016/j.enzmictec.2013.05.004

12. Kaya S. I., Karadurmus L., Ozcelikay G., et al. Electrochemical virus detections with nanobiosensors. Nanosensors for Smart Cities. Micro and Nano Technologies, 2020, 18, 303-326. doi.org/10.1016/B978-0-12-819870-4.00017-7

13. Kharkova A. S., Arlyapov V. A., Turovskaya A. D., et al. A mediator microbial biosensor for assaying general toxicity. Enzyme Microb. Technol., 2020, 132, 109435. doi.org/10.1016/j.enzmictec.2019.109435

14. Su L., Jia W., Hou C., Lei, Y. Microbial biosensors: a review. Biosen. Bioelectron, 2011, 26(5), 1788-1799. doi.org/10.1016/j.bios.2010.09.005

15. Kotova V.Y., Manukhov I.V., Zavilgelskii G.B. LUX-biosensors for detection of SOS-response, heat shock, and oxidative stress. Appl. Biochem. Microbiol., 2010, 46, 781-788. doi.org/10.1134/S0003683810080089

16. Lovinskaya A. V., Kolumbayeva S. Z., Shalakhmetova T. M. Antigenotoxic activity of biologically active substances from Inula britannica and Limonium gmelini. Russ. J. Genet., 2017, 53, 12 1311-1319. DOI: 10.1134/S1022795417120080

17. Bazhenov S., Novoyatlova U., Scheglova E. Influence of the luxR regulatory gene dosage and expression level on the sensitivity of the whole-cell biosensor to acyl-homoserine lactone. Biosensors, 2021; 11(6), 166. doi.org/10.3390/bios11060166

18. Reshetilov A., Plehanova Y. Immobilized cells: biocatalysts and processes. RIOR, 2018, 211-256. doi: 10/29039/02004-3.

19. Skládal P., Morozova N. O., Reshetilov A. N. Amperometric biosensors for detection of phenol using chemically modified electrodes containing immobilized bacteria. Biosen. Bioelectron, 2002, 17(10), 867-873. doi.org/10.1016/S0956-5663(02)00076-3

20. Dávila D., Esquivel J. P., Sabate N., Mas J.Silicon-based microfabricated microbial fuel cell toxicity sensor. Biosen. Bioelectron, 2011, 26(5), 2426-2430. doi.org/10.1016/j.bios.2010.10.025

21. Jiang Y., Liang P., Liu P., et al. A novel microbial fuel cell sensor with biocathode sensing element. Biosen. Bioelectron, 2017, 94, 344-350. doi.org/10.1016/j.bios.2010.10.025

22. Chen Z., Niu Y., Zhao S., et al. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell. Biosen. Bioelectron., 2016, 85, 860-868. doi.org/10.1016/j.bios.2016.06.007

23. Yong D., Liu C., Zhu C., et al. Detecting total toxicity in water using a mediated biosensor system with flow injection. Chemosphere, 2015, 139, 109-116. doi.org/10.1016/j.chemosphere.2015.05.031

24. Ooi L., Heng L. Y., Ahmad A. Toxicity biosensor for sodium dodecyl sulfate using immobilized green fluorescent protein expressing Escherichia coli. J. Sens., 2015, 2015. doi.org/10.1155/2015/809065

25. Bertokova A., Bertok T., Filip J., Tkac J. Gluconobacter sp. cells for manufacturing of effective electrochemical biosensors and biofuel cells. Chemical Papers, 2015, 69, 27-41. doi.org/10.1515/chempap-2015-0040

26. Alferov S.V., Arlyapov V.A., Alferov V.A., Reshetilov A.N. Biofuel cell based on bacteria of the genus Gluconobacter as a sensor for express analysis of biochemical oxygen demand. Appl. Biochem. Microbiol., 2018, 54(6), 637-643. doi 10.1134/S0555109918060028

27. Tsybulskii I.E., Sazykina M.A. New biosensors for assessment of environmental toxicity based on marine luminescent bacteria. Appl. Biochem. Microbiol., 2010, 46(5), 505-510. doi 10.1134/S0003683810050078

28. Zhdanova G. O.,Vyatchina O.F.Stom D. I., et al. Detoxication solution of salts of mercury, cadmium, lead and arsenic yeast biomass Saccharomyces cerevisiae. Irkutsk State University Bulletin. Series: Biology. Ecology, 2014, 7.



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA