BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 101-110; DOI 10.21519/0234-2758-2021-37-6-101-110
A.V. Gildebrant1*, I.S. Sazykin1, and M.A. Sazykina1

Formation of Biofilms by Natural Microbial Strains in the Presence of Naphtalene and Anthracene

1Academy of Biology and Biotechnology named after D. I. Ivanovsky, Southern Federal University, Rostov-on-Don, 344090, Russia

*gildebrant@sfedu.ru
Received - 16.04.2021; Accepted - 10.08.2021

REFERENCES

1. Harvey R.G. Bridged polycyclic aromatic hydrocarbons. A review. Org. Prep. Proced. Int., 1997, 29(3), 243-283. doi: 10.1080/23311843.2017.1339841

2. Kim K.H., Jahan S.A., Kabir E., et al. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int., 2013, 60, 71-80. doi: 10.1016/j.envint.2013.07.019

3. Cetin B., Yurdakul S., Gungormus E., et al. Source apportionment and carcinogenic risk assessment of passive air sampler-derived PAHs and PCBs in a heavily industrialized region. Sci Total. Environ., 2018, 633, 30-41. doi: 10.1016/j.scitotenv.2018.03.145

4. Alshaarawy O., Elbaz H.A., Andrew M.E. The association of urinary polycyclic aromatic hydrocarbon biomarkers and cardiovascular disease in the US population. Environ. Int., 2016, 89, 174-178. doi: 10.1016/j.envint.2016.02.006

5. Yin W., Hou, J., Xu T., et al. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events. Sci. Total. Environ., 2018, 616, 841-854. doi: 10.1016/j.scitotenv.2017.10.238

6. Wild S.R., Jones K.C. Polynuclear aromatic hydrocarbons in the United Kingdom environment: A preliminary source inventory and budget. Environ. Pollut., 1995, 88, 91-108. doi: 10.1016/0269-7491(95)91052-M

7. Van Jaarsveld J.A., Van Pul W.A. J., De Leeuw F.A. Modelling transport and deposition of persistent organic pollutants in the European region. Atmos. Environ., 1997, 31(7), 1011-1024. doi: 10.1016/S1352-2310(96)00251-8

8. Abdel-Shafy H.I., Mansour M.S.M. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyp. J. Pet., 2016, 25(1), 107-123. doi: 10.1016/j.ejpe.2015.03.011

9. Peng R. H., Xiong A. S., Xue Y., et al. Microbial biodegradation of polyaromatic hydrocarbons. FEMS Microbiol. Rev., 2008, 32(6), 927-955. doi: 10.1111/j.1574-6976.2008.00127.x

10. Haritash A.K., Kaushik C.P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J. Hazard. Mater., 2009, 169(1-3), 1-15. doi: 10.1016/j.jhazmat.2009.03.137

11. Sudakin D.L., Stone D.L., Power L. Naphthalene mothballs: emerging and recurring issues and their relevance to environmental health. Curr. Top. Toxicol., 2011, 7, 13.

12. Jia C., Batterman S. A critical review of naphthalene sources and exposures relevant to indoor and outdoor air. Int. J. Env. Res. Pub. He., 2010, 7(7), 2903-2939. doi: 10.3390/ijerph7072903

13. Traven, V.F. Organic Chemistry A Textbook for High Schools. 2 Volumes. Moscow, Russia: ICC "Akademkniga", 2004, 1, 727.

14. Das P., Mukherjee S., Sen R. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere, 2008, 72(9), 1229-1234. doi: 10.1016/j.chemosphere.2008.05.015

15. Wastewater Treatment: Occurrence and Fate of Polycyclic Aromatic Hydrocarbons (PAHs) [Ed. Forsgren A. J.]. New York, USA: CRC Press, 2018, 260. doi: 10.1201/9781351229128

16. Abidin A.N.Z., Talib S.A., Alias S., et al. Occurrence and bioremediation of anthracene in the environment. J. Fundam. Appl. Sci., 2017, 9(6S), 214-226. doi: 10.4314/jfas.v9i6s.17

17. Davey M.E., O'toole G.A. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev., 2000, 64(4), 847-867. doi: 10.1128/mmbr.64.4.847-867.2000

18. Sambrook J., Fritsch E.F., Maniatis T. Molecular cloning: A Laboratory Manual. New York, USA: Cold Spring Harbor Laboratory Press, 1982, 479.

19. Stepanović, S., Vuković, D., Dakić, I., et al. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods, 2000, 40(2), 175-179. doi: 10.1016/s0167-7012(00)00122-6

20. Gildebrant A.V., Kushnareva D.N., Kaplina A.V., et al. The Effect of Pollutants on the Intensity of Biofilm Formation by the Strain Vibrio aquamarinus VKPM B-11245. Izv. Saratov Univ. (N. S.), Ser. Chemistry. Biology. Ecology, 2019, 19(1), 103-111. doi: https://doi.org/10.18500/1816-9775- 2019-19-1-103-111

21. Salari S., Seddighi N.S., Almani P.G.N. Evaluation of biofilm formation ability in different Candida strains and anti-biofilm effects of Fe3O4-NPs compared with Fluconazole: an in vitro study. J. Mycol. Med., 2018, 28(1), 23-28. doi: 10.1016/j.mycmed.2018.02.007

22. Li X., Yan Z., Xu J. Quantitive variation of biofilms among strains of natural populations of Candida albicans. Microbiology, 2003, 149 (2), 353-362. doi: 10.1099/mic.0.25932-0

23. Peeters E., Nelis H.J., Coenye T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods, 2008, 72(2), 157-165. doi: 10.1016/j.mimet.2007.11.010

24. Pierce C.G., Uppuluri P., Tristan A.R., et al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc., 2008, 3(9), 1494. doi: 10.1038/nport.2008.141

25. Karunanidhi A. Ghaznavi-Rad E., Hamat R.A., et al. Antibacterial and antibiofilm activities of nonpolar extracts of allium stipitatum regel. against multidrug resistant bacteria. BioMed Res. Int., 2018, 2018, 9845075. doi: 10.1155/2018/9845075

26. Singh S.K., Chowdhury I., Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J., 2017, 11, 53. doi: 10.2174/1874285801711010053

27. Flemming H.C., Neu T.R., Wozniak D.J. The EPS matrix: the "house of biofilm cells". J. Bacteriol., 2007, 189(22), 7945-7947. doi: 10.1128/JB.00858-07

28. Habe H., Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci. Biotechnol. Biochem., 2003, 67(2), 225-243. doi: 10.1271/bbb.67.225

29. Pathak H., Kantharia D., Malpani A., et al. Naphthalene degradation by Pseudomonas sp. HOB1: in vitro studies and assessment of naphthalene degradation efficiency in simulated microcosms. J. Hazard. Mater., 2009, 166(2-3), 1466-1473. doi: 10.1016/j.jhazmat.2008.12.074

30. Karimi B., Habibi M., Esvand M. Biodegradation of naphthalene using Pseudomonas aeruginosa by up flow anoxic-aerobic continuous flow combined bioreactor. J. Environ. Health Sci. Eng., 2015, 13(1), 1-10. doi: 10.1186/s40201-015-0175-1

31. Asally M., Kittisopikul M., Rué P., et al. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc. Natl. Acad. Sci., 2012, 109(46), 18891-18896. doi: 10.1073/pnas.1212429109

32. López D., Vlamakis H., Losick R., et al. Cannibalism enhances biofilm development in Bacillus subtilis. Mol. Microbiol., 2009, 74(3), 609-618. doi: 10.1073/pnas.1212429109

33. Hedlund B.P., Staley J.T. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Syst. Evol. Microbiol., 2001, 51(1), 61-66. doi: 10.1099/00207713-51-1-61

34. Smith C.B., Johnson C.N., King G.M. Assessment of polyaromatic hydrocarbon degradation by potentially pathogenic environmental Vibrio parahaemolyticus isolates from coastal Louisiana, USA. Mar. Pollut. Bull., 2012, 64(1), 138-143. doi: 10.1016/j.marpolbul.2011.10.007

35. Roy R., Bhattacharya P., Chowdhury R. Reaction engineering studies on the biodegradation of anthracene on bioremediation of diesel contaminated soil using Acinetobacter sp. (ATCC No. 14293). Can. J. Chem. Eng., 2006, 84(4), 501-507. doi: 10.1002/cjce.5450840412

36. Obafemi Y.D., Taiwo O.S., Omodara O.J., et al. Biodegradation of crude petroleum by bacterial consortia from oil-contaminated soils in Ota, Ogun State, South-Western, Nigeria. Environ. Technol. Innov., 2018, 12, 230-242. doi: 10.1016/j.eti.2018.09.006

37. Jacques R.J.S. Santos E.C., Bento F.M., et al. Anthracene biodegradation by Pseudomonas sp. isolated from a petrochemical sludge landfarming site. Int. Biodeter. Biodegr., 2005, 56(3), 143-150. doi: 10.1016/j.ibiod.2005.06.005

38. Santos E.C., Jacques R.J., Bento F.M., et al. Anthracene biodegradation and surface activity by an iron-stimulated Pseudomonas sp. Bioresource Technol., 2008, 99(7), 2644-2649. doi: 10.1016/j.biortech.2007.04.050

39. Mangwani N., Shukla S.K., Kumari S., et al. Effect of biofilm parameters and extracellular polymeric substance composition on polycyclic aromatic hydrocarbon degradation. RSC advances, 2016, 6(62), 57540-57551. doi: 10.1039/C6RA12824F

40. Zhang Y., Wang F., Zhu X., et al. Extracellular polymeric substances govern the development of biofilm and mass transfer of polycyclic aromatic hydrocarbons for improved biodegradation. Bioresource Technol., 2015, 193, 274-280. doi: 10.1016/j.biortech.2015.06.110

41. Steinbach G., Crisan C.V., Ng S.L., et al. Accumulation of dead cells from contact killing facilitates coexistence in bacterial biofilms. J. Roy. Soc. Interface, 2020, 17(173), 20200486. doi: 10.1098/rsif.2020.0486

42. Isaac P., Alessandrello M.J., Macedo A.J., et al. Pre-exposition to polycyclic aromatic hydrocarbons (PAHs) enhance biofilm formation and hydrocarbon removal by native multi-species consortium. J. Environ. Chem. Eng., 2017, 5(2), 1372-1378. doi: 10.1016/j.jece.2017.02.031

43. Mangwani N., Shukla S.K., Rao T.S., et al. Calcium-mediated modulation of Pseudomonas mendocina NR802 biofilm influences the phenanthrene degradation. Colloids Surf. B Biointerfaces, 2014, 114, 301-309. doi: 10.1016/j.colsurfb.2013.10.003

44. Mangwani N., Kumari S., Surajit D.A.S. Marine bacterial biofilms in bioremediation of polycyclic aromatic hydrocarbons (PAHs) under terrestrial condition in a soil microcosm. Pedosphere, 2017, 27(3), 548-558. doi: 10.1016/S1002-0160(17)60350-3

45. Nogales J., García J.L., Díaz E. Degradation of aromatic compounds in Pseudomonas: a systems biology view. Aerobic utilization of hydrocarbons, oils and lipids, Handbook of hydrocarbon and lipid microbiology. Springer, Cham, 2017, 1-49. doi: 10.1007/978-3-319-39782-5_32-1

46. Adebusuyi A.A., Foght J.M. The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux. Appl. Microbiol. Biotechnol., 2013, 97(6), 2587-2596. doi: 10.1007/s00253-012-4373-9

47. Yao X., Tao, F., Zhang K., et al. Multiple roles for two efflux pumps in the polycyclic aromatic hydrocarbon-degrading Pseudomonas putida strain B6-2 (DSM 28064). Appl. Environ. Microbiol., 2017, 83(24), e01882-17. doi: 10.1128/AEM.01882-17

48. Lal B., Khanna S. Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J. Appl. Bacterial.,1996, 81(4), 355-362. doi: 10.1111/j.1365-2672.1996.tb03519.x



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA