Vol 37(2021) N 6 p. 74-83; DOI 10.21519/0234-2758-2021-37-6-74-83
E.S. Bobrov1, A.Yu. Gorbunova1, E.P. Sannikova1, I.I. Gubaidullin1,2, O.M. Ignatova1, M.Yu. Kopaeva1, N.V. Bulushova1, and D.G. Kozlov1*

Co-Purification of Recombinant Modified Glucagon-Like and Glucose-Dependent Insulinotropic Peptide to Create a Two-Component Drug for the Treatment of Type 2 Diabetes Mellitus and Obesity

1Kurchatov Institute National Research Center, Moscow, 123182, Russia
2NRC Kurchatov Institute-GOSNIIGENETIKA Kurchatov Genomic Center, Moscow, 117545, Russia

Received - 01.06.2021; Accepted - 08.09.2021


1. Smekhova I.E., Perova Yu.M., Tureckova N.N. Equivalences of multicomponent drugs. The in vitro method. Health is the basis of human potential: problems and solutions, 2012, 7(2), 875.)

2. Keith C.T., Borisy A.A., Stockwell B.R. Multicomponent therapeutics for networked systems. Nature reviews. Drug discovery, 2005, 4(1), 71-78. doi: 10.1038/nrd1609

3. Brandta S.J., Götza A., Tschöpa M.H., Müllera T.D. Gut hormone polyagonists for the treatment of type 2 diabetes. Peptides, 2018, 100, 190-201. doi: 10.1016/j.peptides.2017.12.021.

4. Boer G.A., Holst J.J. Incretin Hormones and Type 2 Diabetes-Mechanistic Insights and Therapeutic Approaches. Biology, 2020, 9, 473; doi:10.3390/biology9120473

5. Bailey C.J. GIP analogues and the treatment of obesity-diabetes. Peptides, 2020, 125, 170202. doi: 10.1016/j.peptides.2019.170202

6. Bulushova N.V., Asrarkulova A.S. and Kozlov D.G. Incretin analogues in therapy of type 2 diabetes and obesity. Biotechnology 2021, 37, 2, 20-31 (in Russian). doi: 10.21519/0234-2758-2021-37-2-20-31)

7. Sannikova E.P., Bulushova N.V., Cheperegin S.E., Specific activity of recombinant modified human glucagon-like peptide 1. Applied Biochemistry and Microbiology, 2019, 55(7), 722-732

8. Rykalina N.V., Askerova E.V., Bulushova N.V., Kozlov D.G. Intranasal Human Recombinant Modified Glucagon-Like Peptide-1: High Antihyperglycemic activity and duration of action in mice. Bulletin of Experimental Biology and Medicine, 2020, 169(1), 53-56. doi: 10.1007/s10517-020-04822-9)

9. Nauck M.A., Bartels E., Orskov C. et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-1-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol. Metab., 1993, 76(4), 912-917. doi: 10.1210/jcem.76.4.8473405.

10. Tseng C.C., Kieffer T.J., Jarboe L.A., et al. Postprandial stimulation of insulin release by glucosedependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J. Clin. Invest., 1996, 98(11), 2440-2445. doi: 10.1172/JCI119060.

11. Finan B., Ma T., Ottaway N., et al. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci. Transl. Med., 2013, 5, 209ra151. doi: 10.1126/scitranslmed.3007218.

12. Finan B., Yang B., Ottaway N., et al. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat. Med., 2015, 21, 27-36. doi: 10.1038/nm.3761

13. Jall S., Sachs S., Clemmensen C., et al. Monomeric GLP-1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol. Metab., 2017, 6(5), 440-446. doi: 10.1016/j.molmet.2017.02.002.

14. Gasbjerg L.S., Helsted M.M., Hartmann B., et al. Separate and Combined Glucometabolic Effects of Endogenous Glucose-Dependent Insulinotropic Polypeptide and Glucagon-like Peptide 1 in Healthy Individuals. Diabetes, 2019, 68, 906-917, doi:10.2337/db18-1123

15. Nauck M.A. & Meier J.J. GIP and GLP-1: Stepsiblings Rather Than Monozygotic Twins Within the Incretin Family. Diabetes, 2019, 68(5), 897-900. doi: 10.2337/dbi19-0005

16. Gault V.A., Flatt P.R., O'Harte F.P.M. Glucose-dependent insulinotropic polypeptide analogues and their therapeutic potential for the treatment of obesity-diabetes. Biochem. Biophys. Res. Commun., 2003, 308(2), 207-213. doi: 10.1016/S0006-291X(03)01361-5

17. Irwin N., Flatt P.R., Gault V.A. GIP-Based Therapeutics for Diabetes and Obesity. Curr. Chem. Biol., 2008, 2, 61-68. doi: 10.2174/2212796810802010060

18. Kozlov D.G., Sannikova E.P., Cheperegin S.E. Temperature-sensitive mutant intein for insoluble expression of the precursor of the target protein. Patent RU 2619217, 12.05.2017. Publ. 12.05.2017, bul.№ 14.

19. Kozlov D.G., Sannikova E.P., Klebanov F.A., et al. Polypeptide for blood sugar level reducing on basis of human glucagon-like peptide-1, recombinant producing strain E.Coli and method of obtaining this polypeptide. Patent RU, 2642260, 24.01.2018. Publ. 24.01.2018, bul. №3

20. Sannikova E.P., Klebanov F.A., Cheperegin S.E., Kozlov D.G. Properties and biotechnological application of mutant derivatives of mini-intein PRP8 from Penicillium chrysogenum with improved control of C-terminal processing. Biotechnology, 2019, 35(6), 91-101.(in Russian) doi: 10.21519/0234-2758-2019-35-6-91-101)

21. Sannikova E.P., Bulushova N.V., Cheperegin S.E., et al. The modified heparin-binding L-asparaginase of Wolinella succinogenes. Mol. Biotechnol., 2016, 58(8-9), 528-539. doi: 10.1007/s12033-016-9950-1

22. European Convention for the Protection of Vertebrate Animals Used for Experiments and Other Scientific Purposes ETS N 123 (Strasbourg, March 18, 1986

23. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.

24. Cheperegin S.E., Sannikova E.P., Malysheva A.V. et al. Highly active modified variants of recombinant phospholipase А2 from Streptomyces violaceoruber for effective biosynthesis in yeasts. Biotechnology, 2019, 35(3), 30-41. (in Russian) doi: 10.21519/0234-2758-2019-35-3-30-41)

25. Sannikova E.P., Cheperegin S.E., Kozlov D.G. Ubiquitin-specific proteinase of E.coli does not require obligatory presence of dipeptide GlyGly at processing site. Biotechnology, 2019, 35(2), 25-29. (in Russian) doi: 10.21519/0234-2758-2019-35-2-25-29

26. Sparre-Ulrich A.H., Hansen L.S., Svendsen B., et al. Species-specific action of (Pro3)GIP - a full agonist at human GIP receptors, but a partial agonist and competitive antagonist at rat and mouse GIP receptors. Br. J. Pharmacol., 2016, 173(1), 27-38. doi: 10.1111/bph.13323