BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 58-73; DOI 10.21519/0234-2758-2021-37-6-58-73
A.M. Kholdina1*, A.A. Laikova1, and I.N. Serezhkin1

Koumiss: Microbial Composition and Fermentation Characteristics

1Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia

*annahold@yandex.ru
Received - 21.07.2021; Accepted - 18.10.2021

REFERENCES

1. Danova S., Petrov K., Pavlov P., Petrova P. Isolation and characterization of Lactobacillus strains involved in koumiss fermentation. Int. J. Dairy Technol., 2005, 58(2), 100-105. https://doi.org/10.1111/j.1471-0307.2005.00194.x

2. Gesudu Q., Zheng Y., Xi X., et al. Investigating bacterial population structure and dynamics in traditional koumiss from Inner Mongolia using single molecule real-time sequencing. J. Dairy Sci., 2016, 99(10), 7852-7863. doi: 10.3168/jds.2016-11167

3. Jastrzębska E., Wadas E., Daszkiewicz T., Pietrzak-Fiećko R. Nutritional value and health-promoting properties of mare's milk- a review. Czech. J. Anim. Sci., 2017, 62(12), 511-518. doi: 10.17221/61/2016-CJAS

4. Csapo J., Stefler, J., Martin T. G., et al. Composition of mares' colostrum and milk. Fat content, fatty acid composition and vitamin content. Int. Dairy J., 1995, 5(4), 393-402. https://doi.org/10.1016/0958-6946(94)00008-D

5. O'Shea E. F., Cotter P. D., Stanton C., et al. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol., 2012, 152(3), 189-205. https://doi.org/10.1016/j.ijfoodmicro.2011.05.025

6. Malacarne M., Martuzzi F., Summer A., Mariani. Protein and fat composition of mare's milk: some nutritional remarks with reference to human and cow's milk. Int. Dairy J., 2002, 12(11), 869-877. https://doi.org/10.1016/S0958-6946(02)00120-6

7. Marconi E., Panfili G. Chemical composition and nutritional properties of commercial products of mare milk powder. J Food Compost. Anal., 1998, 11(2), 178-187. https://doi.org/10.1006/jfca.1998.0573

8. Singh P. K., Shah N. P. Other fermented dairy products: Kefir and koumiss. Yogurt in Health and Disease Prevention.: Academic Press, 2017, 87-106.

9. Luhovyy B. L., Akhavan T., Anderson G. H. Whey proteins in the regulation of food intake and satiety. J. Am. Coll. Nutr., 2007, 26(6), 704S-712S. https://doi.org/10.1080/07315724.2007.10719651

10. Hoffman J. R., Falvo M. J. Protein-which is best? J. Sports Sci. Med., 2004, 3(3), 118-130.

11. Di Cagno R., Tamborrino A., Gallo G., et al. Uses of mares' milk in manufacture of fermented milks. Int. Dairy J., 2004, 14(9), 767-775. https://doi.org/10.1016/j.idairyj.2004.02.005

12. Mahmood A., Usman S. A comparative study on the physicochemical parameters of milk samples collected from buffalo, cow, goat and sheep of Gujrat, Pakistan. Pak. J. Nutr., 2010, 9(12), 1192-1197. doi: 10.3923/pjn.2010.1192.1197

13. Hajirostamloo B., Mahastie P. Comparison of nutritional and chemical parameters of soymilk and cow milk. World Acad. Eng. Technol., 2009, 57(9), 436-438.

14. Navrátilová P., Borkovcová I., Kaniová L., et al. The content of selected vitamins and iodine in mare's milk. Acta Vet. Brno., 2020, 88(4), 473-480. https://doi.org/10.2754/avb201988040473

15. Montanari G., Zambonelli C., Grazia L., et al. Saccharomyces unisporus as the principal alcoholic fermentation microorganism of traditional koumiss. J. Dairy Res., 1996, 63(2), 327-331. doi: https://doi.org/10.1017/S0022029900031836

16. Wszolek M., Kupiec-Teahan B., Skov Guldager H., Tamime A.Y. Production of kefir, koumiss and other related products. Fermented milks.: Blackwell Publishing Ltd, 2006, 174-216.

17. Alexeyeva N., Mineyev E. To the question on the technology of koumiss production. Bulletin of science and practice., 2017, 10, 138-144. doi: 10.5281/zenodo.1012273

18. Guo L., Ya M., Guo Y.-S., et al. Study of bacterial and fungal community structures in traditional koumiss from Inner Mongolia. J. Dairy Sci., 2019, 102(3), 1972-1984. https://doi.org/10.3168/jds.2018-15155

19. Mu Z., Yang X. J., Yuan H., et al. Detection and identification of wild yeast in Koumiss. Food Microbiol., 2012, 31(2), 301-308. https://doi.org/10.1016/j.fm.2012.04.004

20. Gray S. R., Rawsthorne H., Dirks B., Phister T.G. Detection and enumeration of Dekkera anomala in beer, cola, and cider using real-time PCR. Lett. Appl. Microbiol., 2011, 52(4), 352-359. https://doi.org/10.1111/j.1472-765X.2011.03008.x

21. Fadda M. E., Cosentino, S., Deplano M., Palmas F. Yeast populations in Sardinian feta cheese. Int. J. Food Microbiol., 2001, 69(1-2), 153-156. https://doi.org/10.1016/S0168-1605(01)00586-4

22. Tang H, Ma H., Hou Q., et al. Profiling of koumiss microbiota and organic acids and their effects on koumiss taste. BMC Microbiol., 2020, 20(1), 1-11. https://doi.org/10.1186/s12866-020-01773-z

23. Sun Z., Liu W., Gao W., et al. Identification and characterization of the dominant lactobacilli isolated from koumiss in China. J. Gen. Appl. Microbiol., 2010, 56(3), 257-265. https://doi.org/10.2323/jgam.56.257

24. Yao G., Yu J., Hou Q., et al. A perspective study of koumiss microbiome by metagenomics analysis based on single-cell amplification technique. Front. Microbiol., 2017, 8, 165-176. https://doi.org/10.3389/fmicb.2017.00165

25. Hui Y.H., Özgul Evranuz E. Handbook of Animal-Based Fermented Food and Beverage Technology 2nd Edition. CRC Press, 2018, 814 p.

26. Skripnyuk A. A., Riabtseva S. A. Modern methods for producing β-galactosidase. Nauka, innovacii, tekhnologii, 2014, 3, 197-204.

27. Itoh T., Suzuki M., Adachi S. Production and characterization of β-galactosidase from lactose-fermenting yeasts. Agr Biol Chem., 1982, 46(4), 899-904. https://doi.org/10.1080/00021369.1982.10865183

28. Rogosa M. Mechanism of the fermentation of lactose by yeasts. J. Biol. Chem., 1948, 175(1), 413-425.

29. Skorodumova A. M. Drozhzhi moloka i molochnyh produktov i ih proizvodstvennoe znachenie. M.:Pishchevaya promyshlennost', 1969, 63 p.

30. Izaguirre M. E., Castillo F. J. Selection of lactose-fermenting yeast for ethanol production from whey. Biotechnol. Lett., 1982, 4(4), 257-262. https://doi.org/10.1007/BF00132397

31. Banat I. M., Nigam P., Marchant R. Isolation of thermotolerant, fermentative yeasts growing at 52°C and producing ethanol at 45°C and 50°C. World J. Microbiol. Biotechnol., 1992, 8(3), 259-263. https://doi.org/10.1007/BF01201874

32. Grba S., Stehlik-Tomas V., Stanzer D., et al. Selection of yeast strain Kluyveromyces marxianus for alcohol and biomass production on whey. Chem Biochem Eng Q., 2002, 16(1), 13-16.

33. Fleet G.H. Yeasts in dairy products. J. Appl. Bacteriol., 1990, 68(3), 199-211. https://doi.org/10.1111/j.1365-2672.1990.tb02566.x

34. Walker G.M. Yeast physiology and biotechnology. John Wiley & Sons, 1998, 362 p.

35. Nehlin J.O., Carlberg M., Ronne H. Yeast galactose permease is related to yeast and mammalian glucose transporters. Gene., 1989, 85(2), 313-319. https://doi.org/10.1016/0378-1119(89)90423-X

36. Slaa J., Gnode M., Else H. Yeast and fermentation: the optimal temperature. J. Org. Chem., 2009, 134(1).

37. Chen Y., Aorigele C., Wang C., et al. Screening and extracting mycocin secreted by yeast isolated from koumiss and their antibacterial effect. J. Food Nutr. Res., 2015, 3, 52-56. DOI: 10.12691/JFNR-3-1-9

38. Kozhakhmetov S., Tynybayeva I., Baikhanova D., et al. Analysis of Koumiss in Kazakhstan. Cent. Asian J. Glob. Health., 2014, 3, 163. doi: 10.5195/cajgh.2014.163.

39. Miyamoto M, Seto Y., Nakajima H., et al. Denaturing gradient gel electrophoresis analysis of lactic acid bacteria and yeasts in traditional Mongolian fermented milk. Food Sci. Technol. Res., 2010, 16(4), 319-326. https://doi.org/10.3136/fstr.16.319

40. Wightman R., Meacock P. A. The THI5 gene family of Saccharomyces cerevisiae: distribution of homologues among the hemiascomycetes and functional redundancy in the aerobic biosynthesis of thiamin from pyridoxine. Microbiology., 2003, 149(6), 1447-1460. https://doi.org/10.1099/mic.0.26194-0

41. Sahasrabudhe N. A., Sankpal N. V. Production of organic acids and metabolites of fungi for food industry. Applied Mycology and Biotechnology, 2001, 1, 387-425.

42. Hammes W. P., Vogel R. F. The genus Lactobacillus. The genera of lactic acid bacteria. Springer, Boston, MA, 1995, 2, 19-54.

43. Arakawa K., Miyamoto M., Miyamoto T. Interaction between lactic acid bacteria and yeasts in airag, an alcoholic fermented milk. Anim. Sci. J., 2013, 84(1), 66-74. https://doi.org/10.1111/j.1740-0929.2012.01035.x

44. An Y., Adachi Y., Ogava Y. Classification of lactic acid bacteria isolated from chigee and mare milk collected in Inner Mongolia. Anim. Sci. J., 2004, 75(3), 245-252. https://doi.org/10.1111/j.1740-0929.2004.00183.x

45. Hao Y., Zhao L., Zhang H., et al. Identification of the bacterial biodiversity in koumiss by denaturing gradient gel electrophoresis and species-specific polymerase chain reaction. J. Dairy Sci., 2010, 93(5), 1926-1933. https://doi.org/10.3168/jds.2009-2822

46. Gomes A.M.P., Malcata X.F. Bifidobacterium ssp. and Lactobacillus acidophilus: biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends Food Sci. Technol., 1999, 10(4-5), 139-157. https://doi.org/10.1016/S0924-2244(99)00033-3

47. Wu R., Wang L., Wang J., et al. Isolation and preliminary probiotic selection of lactobacilli from koumiss in Inner Mongolia. J. Basic Microbiol., 2009, 49(3), 318-326. https://doi.org/10.1002/jobm.200800047

48. Sadat-Mekmene L., Jardin J., Corre C., et al. Simultaneous presence of PrtH and PrtH2 proteinases in Lactobacillus helveticus strains improves breakdown of the pure αs1-casein. Appl. Environ. Microbiol., 2011, 77(1), 179-186. https://doi.org/10.1128/AEM.01466-10

49. Agerholm-Larsen L., Bell M. L., Grunwald G. K., Astrup A. The effect of a probiotic milk product on plasma cholesterol: a meta-analysis of short-term intervention studies. Eur. J. Clin. Nutr., 2000, 54(11), 856-860. https://doi.org/10.1038/sj.ejcn.1601104

50. Ringø E., Andersen R., Sperstad S., et al. Bacterial community of koumiss from Mongolia investigated by culture and culture-independent methods. Food Biotechnol., 2014, 28(4), 333-353. https://doi.org/10.1080/08905436.2014.964253

51. Bao L., Wurihan, Hasigaowa, et al. Bacterial community succession and metabolite changes during the fermentation of koumiss, a traditional Mongolian fermented beverage. Int. Dairy J., 2019, 98, 1-8. https://doi.org/10.1016/j.idairyj.2019.06.013

52. Özer, B., Kirmaci, H.A. Encyclopedia of Food Microbiology. Elsevier, 2014, 1, 900-907.

53. Liu W., Wang J., Zhang J., et al. Dynamic evaluation of the nutritional composition of homemade koumiss from Inner Mongolia during the fermentation process. J. Food Process. Preserv., 2019, 43(8), 14-22. https://doi.org/10.1111/jfpp.14022

54. Young W. Park. Bioactive Components in milk and dairy products. John Wiley & Sons, 2009, 251-263.

55. Urbienė S., Leskauskaitė D. Formation of some organic acids during fermentation of milk. Pol. J. Food Nutr. Sci., 2006, 15(3), 277-281.

56. Liu J. J., Liu Y. Determination of nutrients and trace metal elements of koumiss in West Wuzhumuqin in Xilinguole in Inner Mongolia and the analysis of environmental influence factor. Adv. Mat. Res., 2012, 518-523, 957-960. https://doi.org/10.4028/www.scientific.net/AMR.518-523.957

57. Smid E. J., Kleerebezem M. Production of aroma compounds in lactic fermentations. Annu. Rev. Food Sci., 2014, 5, 313-326. doi: 10.1146/annurev-food-030713-092339

58. Ardö Y. Flavour formation by amino acid catabolism. Biotechnol. Adv., 2006, 24(2), 238-242. https://doi.org/10.1016/j.biotechadv.2005.11.005

59. Helinck S., Le Bars D., Moreau D., Yvon M. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl. Environ. Microbiol., 2004, 70(7), 3855-3861. https://doi.org/10.1128/AEM.70.7.3855-3861.2004

60. Smit G., Smit B. A., Engels W. J. M. Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol. Rev., 2005, 29(3), 591-610. https://doi.org/10.1016/j.fmrre.2005.04.002

61. Steen A., Buist G., Horsburgh G.J., et al. AcmA of Lactococcus lactis is an N-acetylglucosaminidase with an optimal number of LysM domains for proper functioning. FEBS J., 2005, 272(11), 2854-2868. https://doi.org/10.1111/j.1742-4658.2005.04706.x

62. Baankreis R., van Schalkwijk S., Alting A. C., Exterkate F. A. The occurrence of two intracellular oligoendopeptidases in Lactococcus lactis and their significance for peptide conversion in cheese. Appl. Microbiol. Biotechnol., 1995, 44(3-4), 386-392. https://doi.org/10.1007/BF00169933

63. Molimard P., Spinnler H. E. Compounds involved in the flavor of surface mold-ripened cheeses: Origins and properties. J. Dairy Sci., 1996, 79(2), 169-184. https://doi.org/10.3168/jds.S0022-0302(96)76348-8

64. Kilcawley K. N., Faulkner H., Clarke H. J., et al. Factors influencing the flavour of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods., 2018, 7(3), 37. https://doi.org/10.3390/foods7030037

65. Bandell M., Lhotte M. E., Marty-Teyssetet C., et al. Mechanism of the citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. Appl. Environ. Microbiol., 1998, 64(5), 1594-1600. https://doi.org/10.1128/AEM.64.5.15941600.1998

66. Chaves A., Fernandez M., Lerayer A. L. S., et al. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microbiol., 2002, 68(11), 5656-5662. https://doi.org/10.1128/AEM.68.11.5656-5662.2002

67. Filimonova I. YU., CHibilyova V. P., Svyatoha N. YU. Koumiss treatment as a promising direction for the development of recreational use of nature in the Orenburg region. Vestnik OGU, 2015, 7 (182), 188-192.

68. Ruxton C. H. S., Reed S. C., Simpson M. J. A., Millington K. J. The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J. Hum. Nutr. Diet., 2004, 17(5), 449-459. https://doi.org/10.1111/j.1365-277X.2004.00552.x

69. Sun T. S., Zhao S. P., Wang H. K., et al. ACE-inhibitory activity and gamma-aminobutyric acid content of fermented skim milk by Lactobacillus helveticus isolated from Xinjiang koumiss in China. Eur. Food Res. Technol., 2009, 228(4), 607-612. https://doi.org/10.1007/s00217-008-0969-9

70. Franciosi E., Carafa I., Nardin T., et al. Biodiversity and γ-aminobutyric acid production by lactic acid bacteria isolated from traditional alpine raw cow's milk cheeses. Biomed Res. Int., 2015, 1-11. https://doi.org/10.1155/2015/625740

71. Wu R., Wang W., Yu D., et al. Proteomics analysis of Lactobacillus casei Zhang, a new probiotic bacterium isolated from traditional home-made koumiss in Inner Mongolia of China. Mol. Cell. Proteom., 2009, 8(10), 2321-2338. https://doi.org/10.1074/mcp.M800483-MCP200

72. Minelli E. B., Benini A., Marzotto M., Ruzzenente O. Assessment of novel probiotic Lactobacillus casei strains for the production of functional dairy foods. Int. Dairy J. 2004,14(8), 723-736. https://doi.org/10.1016/j.idairyj.2004.01.007

73. de Vrese M., Stegelmann A., Richter B., et al. Probiotics-compensation for lactase insufficiency. Am. J. Clin. Nutr., 2001, 73(2), 421s-429s. https://doi.org/10.1093/ajcn/73.2.421s

74. Xie Y., An H., Hao Y., et al. Characterization of an anti-Listeria bacteriocin produced by Lactobacillus plantarum LB-B1 isolated from koumiss, a traditionally fermented dairy product from China. Food Control. 2011, 22(7), 1027-1031. https://doi.org/10.1016/j.foodcont.2010.12.007

75. Chen Y., Wang C., Hou W., et al. Effects of antibacterial compounds produced by Saccharomyces cerevisiae in Koumiss on pathogenic Escherichia coli Os and its cell surface characteristics. J. Integr. Agric., 2017, 16(3), 742-748. https://doi.org/10.1016/S2095-3119(16)61516-2

76. Kücükcetin A., Yaygin H., Hinrichs J., Kulozik U. Adaptation of bovine milk towards mares' milk composition by means of membrane technology for koumiss manufacture. Int. Dairy J., 2003, 13(12), 945-951. https://doi.org/10.1016/S0958-6946(03)00143-2

77. Tamime A. Y., Marshall V. M. E. Microbiology and biochemistry of cheese and fermented milk. Springer, Boston, MA, 1997, 57-152.

78. Yildiz F. Development and manufacture of yogurt and other functional dairy products. CRC press, 2016, 441 p.

79. Li H., Wang Y., Zhang T., et al. Comparison of backslopping and two-stage fermentation methods for koumiss powder production based on chemical composition and nutritional properties. J. Sci. Food Agric., 2020, 100(4), 1822-1826. https://doi.org/10.1002/jsfa.10220

80. Smid E. J., Lacroix C. Microbe-microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol., 2013, 24(2), 148-154. https://doi.org/10.1016/j.copbio.2012.11.007

81. Kimoto-Nira H., Aoki R., Mizumachi K., et al. Interaction between Lactococcus lactis and Lactococcus raffinolactis during growth in milk: development of a new starter culture. J. Dairy Sci., 2012, 95(4), 2176-2185. https://doi.org/10.3168/jds.2011-4824

82. Sieuwerts S., de Bok F. A. M., Hugenholtz J., van Hylckama Vlieg J. E. T. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol., 2008, 74(16), 4997-5007. https://doi.org/10.1128/AEM.00113-08

83. Sieuwerts S., Molenaar D., van Hijum S. A. F. T., et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol., 2010, 76(23), 7775-7784. https://doi.org/10.1128/AEM.01122-10

84. de Bok F. A. M., Janssen P. W. M., Bayjanov J. R., et al. Volatile compound fingerprinting of mixed-culture fermentations. Appl. Environ. Microbiol., 2011, 77(17), 6233-6239. https://doi.org/10.1128/AEM.00352-11

85. Hickey M. W., Hillier A. J., Jago G. R. Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Appl. Environ. Microbiol., 1986, 51(4), 825-831. https://doi.org/10.1128/aem.51.4.825-831.1986

86. O'Leary V. S., Woychik J. H. Utilization of lactose, glucose, and galactose by a mixed culture of Streptococcus thermophilus and Lactobacillus bulgaricus in milk treated with lactase enzyme. Appl. Environ. Microbiol., 1976, 32(1), 89-94. https://doi.org/10.1128/aem.32.1.89-94.1976

87. Bhattacharya I., Yan S., Yadav J. S. S., et al. Saccharomyces unisporus: biotechnological potential and present status. Compr. Rev. Food Sci. Food Saf., 2013, 12(4), 353-363. doi: 10.1111/1541-4337.12016

88. Duan, S. F., Shi, J. Y., Yin, Q., et al. Reverse evolution of a classic gene network in yeast offers a competitive advantage. Curr. Biol., 2019, 29(7), 1126-1136. https://doi.org/10.1016/j.cub.2019.02.038

89. Sarais I., Piussi D., Aquili V., Stecchini M. L. The behavior of yeast populations in Stracchino cheese packaged under various conditions. J. Food Prot., 1996, 59(5), 541-544. https://doi.org/10.4315/0362-028X-59.5.541

90. Gobbetti M., Corsetti A. Lactobacillus sanfranciscoa key sourdough lactic acid bacterium: a review. Food Microbiol., 1997, 14(2), 175-187. https://doi.org/10.1006/fmic.1996.0083

91. Narvhus J. A., Gadaga T. H. The role of interaction between yeasts and lactic acid bacteria in African fermented milks: a review. Int. J. Food Microbiol., 2003, 86(1-2), 51-60. https://doi.org/10.1016/S0168-1605(03)00247-2

92. Roostita R., Fleet G. H. Growth of yeasts in milk and associated changes to milk composition. Int. J. Food Microbiol., 1996, 31(1-3), 205-219. https://doi.org/10.1016/0168-1605(96)00999-3

93. Paramithiotis S., Gioulatos, S., Tsakalidou E., Kalantzopoulos G. Interactions between Saccharomyces cerevisiae and lactic acid bacteria in sourdough. Process Biochem., 2006, 41(12), 2429-2433. https://doi.org/10.1016/j.procbio.2006.07.001



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA