Vol 37(2021) N 6 p. 34-47; DOI 10.21519/0234-2758-2021-37-6-34-47
M.V. Karpov1, V.M. Nikolaeva1, V.V. Fokina1*, A.A. Shutov1, A.V. Kazantsev2, N.I. Strizhov1, and M.V. Donova1

Construction and Functional Analysis of Mycolicibacterium smegmatis Recombinant Strains Carrying the Genes of Bacillary Cytochromes CYP106A1 and CYP106A2

1G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, «Pushchino Scientific Center for Biological Research, Russian Academy of Sciences», Pushchino, Moscow Oblast, 142290, Russia
2Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia

Received - 13.07.2021; Accepted - 20.08.2021


1. Fegan K.S., Rae M.T., Critchley H.O., et al. Anti-inflammatory steroid signalling in the human peritoneum. J. Endocrinol., 2008, 196(2), 369-376. doi: 10.1677/joe-07-0419

2. Ali Shah S.A., Sultan S., Adnan H.S. A whole-cell biocatalysis application of steroidal drugs. Orient. J. Chem., 2013, 29(2), 389-403. doi: 10.13005/ojc/290201

3. Milecka-Tronina N., Kolek T., Swizdor A., et al. Hydroxylation of DHEA and its analogues by Absidia coerulea AM93. Can an inducible microbial hydroxylase catalyze 7α- and 7β-hydroxylation of 5-ene and 5α-dihydro C19-steroids? Bioorg. Med. Chem., 2014, 22(2), 883-891. doi: 10.1016/j.bmc.2013.11.050

4. Wojtal K., Trojnar M.K., Czuczwar S.J. Endogenous neuroprotective factors: neurosteroids. Pharmacol. Rep., 2006, 58(3), 335-340.

5. Reeder A.Y., Joannou G.E. 15β-Hydroxysteroids (Part I). Steroids of the human perinatal period: the synthesis of 3β,15β,17α-trihydroxy-5-pregnen-20-one. Steroids, 1996, 61(2), 74-81. doi: 10.1016/0039-128x(95)00193-t

6. Bernhardt R. Cytochromes P450 as versatile biocatalysts. J. Biotechnol., 2006, 124(1), 128-145. doi: 10.1016/j.jbiotec.2006.01.026

7. Kiss F.M., Lundemo M.T., Zapp J., et al. Process development for the production of 15β-hydroxycyproterone acetate using Bacillus megaterium expressing CYP106A2 as whole-cell biocatalyst. Microb. Cell Fact., 2015, 14(1), 28. doi: 10.1186/s12934-015-0210-z

8. Kiss F.M., Schmitz D., Zapp. J., et al. Comparison of CYP106A1 and CYP106A2 from Bacillus megaterium - identifcation of a novel 11-oxidase activity. Appl. Microbiol. Biotechnol., 2015, 99(20), 8495-8514. doi: 10.1007/s00253-015-6563-8

9. Girhard M., Klaus T., Khatri Y., et al. Characterizationof the versatile monooxygenase CYP109B1 from Bacillus subtilis. Appl. Microbiol. Biotechnol., 2010, 87(2), 595-607. doi: 10.1007/s00253-010-2472-z

10. Jóźwik I.K., Kiss F.M., Gricman Ł., et al. Structural basis of steroid binding and oxidation by the cytochrome P450 CYP109E1 from Bacillus megaterium. FEBS J., 2016, 283(22), 4128-4148. doi: 10.1111/febs.13911

11. Bracco P., Janssen D.B., Schallmey A. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450. Microb. Cell Fact., 2013, 12(1), 95. doi: 10.1186/1475-2859-12-95

12. Litzenburger M., Bernhardt R. CYP260B1 acts as 9α-hydroxylase for 11-deoxycorticosterone. Steroids, 2017, 127, 40-45. doi: 10.1016/j.steroids.2017.08.006

13. Makino T., Katsuyama Y., Otomatsu T., et al. Regio- and stereospecifc hydroxylation of various steroids at the 16α position of the D ring by the Streptomyces griseus cytochrome P450 CYP154C3. Appl. Environ. Microb., 2014, 80(4), 1371-1379. doi: 10.1128/AEM.03504-13

14. Dangi B., Kim K.H., Kang S.H., et al. Tracking down a novel steroid hydroxylating promiscuous cytochrome P450, CYP154C8 from Streptomyces sp. W2233-SM. Chembiochem., 2018, 19(10), 1066-1077. doi: 10.1002/cbic.201800018

15. Agematu H., Matsumoto N., Fujii Y., et al. Hydroxylation of testosterone by bacterial cytochromes P450 using the Escherichia coli expression system. Biosci. Biotech. Biochem., 2006, 70(1), 307-311. doi: 10.1271/bbb.70.307

16. Zhang X., Peng Y., Zhao J., et al. Bacterial cytochrome P450-catalyzed regio- and stereoselective steroid hydroxylation enabled by directed evolution and rational design. Bioresour. Bioprocess., 2020, 7, 2. doi: 10.1186/s40643-019-0290-4

17. Kim K.H., Lee C.W., Dangi B., et al. Crystal structure and functional characterization of a cytochrome p450 (BaCYP106A2) from Bacillus sp. PAMC 23377. J. Microbiol. Biotechnol., 2017, 27(8), 1472-1482. doi: 10.4014/jmb.1706.06013

18. Schmitz D., Zapp J., Bernhardt R. Steroid conversion with CYP106A2 - production of pharmaceutically interesting DHEA metabolites. Microb. Cell. Fact., 2014, 13, 81. doi: 10.1186/1475-2859-13-81

19. Schmitz D., Janocha S., Kiss F.M., et al. CYP106A2 - a versatile biocatalyst with high potential for biotechnological production of selectively hydroxylated steroid and terpenoid compounds. Biochim. Biophys. Acta, 2018, 1866(1), 11-22. doi: 10.1016/j.bbapap.2017.07.011

20. Sagadin T., Riehm J.L., Milhim M., et al. Binding modes of CYP106A2 redox partners determine differences in progesterone hydroxylation product patterns. Commun. Biol., 2018, 1, 99. doi: 10.1038/s42003-018-0104-9

21. Snapper S.B., Melton R.E., Mustafa S., et al. Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol. Microbiol., 1990, 4(11), 1911-1919. doi: 10.1111/j.1365-2958.1990.tb02040.x

22. Strizhov N., Fokina V., Sukhodolskaya G., et al. Progesterone biosynthesis by combined action of adrenal steroidogenic and mycobacterial enzymes in fast growing mycobacteria. New Biotechnol., 2014, 31S, S67. doi: 10.1016/j.nbt.2014.05.1766

23. Felpeto-Santero C., Galan B., Garcia J.L. Production of 11α-hydroxysteroids from sterols in a single fermentation step by Mycolicibacterium smegmatis. Microb. Biotechnol., 2021, 14(6), 2514-2524. doi: 10.1111/1751-7915.13735

24. Loraine J.K., Smith M.C.M. Genetic techniques for manipulation of the phytosterol biotransformation strain Mycobacterium neoaurum NRRL B-3805. Methods Mol. Biol., 2017, 1645, 93-108. doi: 10.1007/978-1-4939-7183-1_7

25. Daugelat S., Kowall J., Mattow J., et al. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect., 2003, 5(12), 1082-1095. doi: 10.1016/s1286-4579(03)00205-3

26. Poulsen C., Holton S., Geerlof A., et al. Stoichiometric protein complex formation and over expression using the prokaryotic native operon structure. FEBS Lett., 2010, 584, 669-674. doi: 10.1016/j.febslet.2009.12.057

27. Strizhov N., Karpov M., Sukhodolskaya G., et al. Development of mycobacterial strains producing testosterone. Proc. Nat. Acad. Sci. Belarus, Series of chemical sciences, 2016, 3, 57-58.

28. Karpov M.V., Strizhov N.I., Novikova L.A., et al. Reconstruction of the cholesterol hydroxylase/lyase enzyme system of the bovine adrenal cortex in fast-growing mycobacteria. Collection of abstracts of the 19th International Pushchino School-Conference of Young Scientists "Biology - Science of the XXI century". Pushchino Scientific Center RAS, Pushchino, 2015, 237-238. (in Russ.).

29. Sabbadin F., Hyde R., Robin A., et al. LICRED: a versatile drop-in vector for rapid generation of redox-self-sufficient cytochrome P450s. Chembiochem, 2010, 11(7), 987-994. doi: 10.1007/978-1-62703-321-3_20

30. Kollerov V.V., Lobastova T.G., Monti D., et al. Deoxycholic acid transformations catalyzed by selected filamentous fungi. Steroids, 2016, 107, 20-29. doi: 10.1016/j.steroids.2015.12.015

31. Li S., Du L., Bernhardt R. Redox partners: function modulators of bacterial P450 enzymes. Trends Microbiol., 2020, 28(6), 445-454. doi :10.1016/j.tim.2020.02.012

32. Lisurek M., Simgen B., Antes I., Bernhardt R. Theoretical and experimental evaluation of a CYP106A2 low homology model and production of mutants with changed activity and selectivity of hydroxylation. Chembiochem, 2008, 9(9), 1439-1449. doi: 10.1002/cbic.200700670