BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 25-33; DOI 10.21519/0234-2758-2021-37-6-25-33
D.O. Osipov1*, V.Yu. Matys2, V.A. Nemashkalov2, A.M. Rozhkova1, I.A. Shashkov1, A.D. Satrutdinov1, E.G. Kondratyeva1, and A.P. Sinitsyn1,3

Cloning, Isolation, and Properties of a New Recombinant Tannase from the Aspergillus niger Fungus

1Fundamentals of Biotechnology Federal Research Center, Russian Academy of Sciences, Moscow, 119071, Russia
2Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, 142290, Russia
3Lomonosov Moscow State University, Moscow, 119991, Russia

*doosipov@gmail.com
Received - 20.05.2021; Accepted - 22.07.2021

REFERENCES

1. Aguilar C.N., Gutierrez-Sanchez G. Review: sources, properties, applications and potential uses of tannin acyl hydrolase. Food Sci. Technol. Int., 2001, 7, 373-382. doi: 10.1106/69M3-B30K-CF7Q-RJ5G

2. Rajak R.C., Singh A., Banerjee R. Biotransformation of hydrolysable tannin to ellagic acid by tannase from Aspergillus awamori. Biocatal. Biotransformation, 2017, 35, 27-34. doi: 10.1080/10242422.2016.1278210

3. García D.E., Glasser W.G., Pizzi A., et al. Modification of condensed tannins: from polyphenol chemistry to materials engineering. New J. Chem., 2016, 40, 36-49. doi: 10.1039/C5NJ02131F

4. Sieniawska E., Baj T. Tannins. In Pharmacognosy: Fundamentals, Applications and Strategies. Eds S. Badal & R. Delgoda, Academic Press, Amsterdam, 2017, p. 202.

5. Niho N., Shibutani M., Tamura T., et al. Subchronic toxicity study of gallic acid by oral administration in F344 rats. Food Chem. Toxicol., 2001, 39, 1063-1070. doi: 10.1016/S0278-6915(01)00054-0

6. Bajpai B., Patil S. A new approach to microbial production of gallic acid. Braz. J. Microbiol., 2008, 39, 708-711. doi: 10.1590/S1517-838220080004000021

7. Murugan K., Al-Sohaibani S.A. Biocompatible removal of tannin and associated color from tannery effluent using the biomass and tannin acyl hydrolase (E.C.3.1.1.20) enzymes of mango industry solid waste isolate Aspergillus candidus MTTC 9628. Res. J. Microbiol., 2010, 5, 262-271. doi: 10.3923/jm.2010.262.271

8. Bhoite R.N., Murthy P.S. Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food Bioprod. Process., 2015, 94, 727-735. doi:10.1016/J.FBP.2014.10.007

9. Thomas R.L., Murtagh K. Characterization of tannase activity on tea extracts. J. Food Sci., 2006, 50, 1126-1129. doi: 10.1111/j.1365-2621.1985.tb13026.x

10. Nie G., Zheng Z., Gong G., et al. Characterization of bioimprinted tannase and its kinetic and thermodynamics properties in synthesis of propyl gallate by transesterification in anhydrous medium. Appl. Biochem. Biotechnol., 2012, 167, 2305-2317. doi: 10.1007/s12010-012-9775-8

11. Belous E.Yu, Maltabar S.A., Galimova A.Z. Composition for oral cavity care. Patent RU2416391, publ. 2011.04.20, bul. N 11

12. Dhiman S., Mukherjee G., Singh A.K. Recent trends and advancements in microbial tannase-catalyzed biotransformation of tannins: a review. Int. Microbiol., 2018, 21, 175-195. doi: 10.1007/s10123-018-0027-9

13. Sinitsyn A.P., Sinitsina O.A., Rozhkova A.M. Production of Industrial Enzymes based on the expression system of the Penicillium verruculosum fungus. Biotekhnologiya, 2020, 36, 24-41 (in Russ.). doi: 10.31857/S0320972520060093)

14. Chekushina A.V. Cellulolytic enzyme preparations based on Trichoderma, Penicillium and Myceliophtora fungi with increased hydrolytic activity. PhD thesis in Chemistry, Lomonosov Moscow State University, 2013 (in Russ.).

15. Aslanidis C., de Jong P.J. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res., 1990, 18, 6069-6074. doi: 10.1093/nar/18.20.6069

16. Sambrook J., Russell D.W. Preparation and transformation of competent E. coli using calcium chloride. Cold Spring Harb. Protoc., 2006(1), pdb.prot3932. doi: 10.1101/pdb.prot3932

17. Penttilä M., Nevalainen H., Rättö M., et al. A versatile transformation system for the cellulolytic filamentous fungus Trichoderma reesei. Gene, 1987, 61, 155-164. doi: 10.1016/0378-1119(87)90110-7

18. Sharma S., Bhat T.K., Dawra R.K. A spectrophotometric method for assay of tannase using Rhodanine. Anal. Biochem., 2000, 279, 85-89. doi:10.1006/ABIO.1999.4405

19. Lowry O.H., Rosebrough N.J.; Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193, 265-275

20. James P. Proteome Research: Mass Spectrometry. Springer Verlag, Heidelberg, 2001.

21. Hagerman A.E., Butler L.G. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem., 1978, 26, 809-812. doi: 10.1021/jf60218a027

22. Batra A., Saxena R.K. Potential tannase producers from the genera Aspergillus and Penicillium. Process Biochem., 2005, 40, 1553-1557. doi: 10.1016/j.procbio.2004.03.003

23. Iibuchi S., Minoda Y., Yamada K. Hydrolyzing pathway, substrate specificity and inhibition of tannin acyl hydrolase of Asp. oryzae No. 7. Agric. Biol. Chem., 1972, 36, 1553-1562. doi: 10.1080/00021369.1972.10860437

24. Korotkova O.G., Rubtsova E.A., Shashkov I.A. et al. Comparative analysis of the composition and properties of fodder enzyme preparations. Catalysis in Industry, 2018, 18, 72-78 (in Russ.). https://doi.org/10.18412/1816-0387-2018-4-72-78

25. Tomás-Cortázar J., Plaza-Vinuesa L., de las Rivas B., et al. Identification of a highly active tannase enzyme from the oral pathogen Fusobacterium nucleatum subsp. polymorphum. Microb. Cell Fact., 2018, 17, 33. doi: 10.1186/s12934-018-0880-4

26. Hatamoto O., Watarai T., Kikuchi M., et al. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene, 1996, 175, 215-221. doi: 10.1016/0378-1119(96)00153-9

27. Farias G.M., Gorbea C., Elkins J.R., Griffin G.J. Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica. Physiol. Mol. Plant Pathol., 1994, 44, 51-63. doi: 10.1016/S0885-5765(05)80094-3

28. Barthomeuf C., Regerat F., Pourrat H. Production, purification and characterization of a tannase from Aspergillus niger LCF 8. J. Ferment. Bioeng., 1994, 77, 320-323. doi: 10.1016/0922-338X(94)90242-9

29. Sharma S., Bhat T.K., Dawra R.K. Isolation, purification and properties of tannase from Aspergillus niger van Tieghem. World J. Microbiol. Biotechnol., 1999, 15, 673-677. doi: 10.1023/A:1008939816281

30. Ramírez-Coronel M.A., Viniegra-González G., Darvill A., Augur C. A novel tannase from Aspergillus niger with β-glucosidase activity. Microbiology, 2003, 149, 2941-2946. doi: 10.1099/mic.0.26346-0

31. Gonçalves H.B., Riul A.J., Terenzi H.F., et al. Extracellular tannase from Emericella nidulans showing hypertolerance to temperature and organic solvents. J. Mol. Catal. B Enzym., 2011, 71, 29-35. doi: 10.1016/J.MOLCATB.2011.03.005

32. Riul A.J., Gonçalves H.B., Jorge J.A., Guimarães L.H.S. Characterization of a glucose- and solvent-tolerant extracellular tannase from Aspergillus phoenicis. J. Mol. Catal. B Enzym., 2013, 85-86, 126-133. doi: 10.1016/J.MOLCATB.2012.09.001

33. Aharwar A., Parihar D.K. Talaromyces verruculosus tannase production, characterization and application in fruit juices detannification. Biocatal. Agric. Biotechnol., 2019, 18, 101014. doi: 10.1016/J.BCAB.2019.01.052

34. Mondal K.C., Banerjee D., Banerjee R., Pati B.R. Production and characterization of tannase from Bacillus cereus KBR9. J. Gen. Appl. Microbiol., 2001, 47, 263-267. doi: 10.2323/jgam.47.263

35. Banerjee D., Mahapatra M., Bikas P.R. Gallic acid production by submerged fermentation of Aspergillus aculeatus DBF9. J. Basic Microbiol., 2001, 6, 313-318. doi: 10.3923/jm.2007.462.468

36. Jana A., Maity C., Halder S.K., et al. Structural characterization of thermostable, solvent tolerant, cytosafe tannase from Bacillus subtilis PAB2. Biochem. Eng. J., 2013, 77, 161-170. doi: 10.1016/J.BEJ.2013.06.002

37. Abdel-Naby M.A., El-Tanash A.B., Sherief A.D.A. Structural characterization, catalytic, kinetic and thermodynamic properties of Aspergillus oryzae tannase. Int. J. Biol. Macromol., 2016, 92, 803-811. doi: 10.1016/J.IJBIOMAC.2016.06.098

38. Shao Y., Zhang Y.-H., Zhang F., et al. Thermostable tannase from Aspergillus Niger and its application in the enzymatic extraction of green tea. Molecules, 2020, 25, 952. doi: 10.3390/molecules25040952

39. Kumar C.S., Subramanian R., Rao L.J. Application of enzymes in the production of RTD black tea beverages: a review. Crit. Rev. Food Sci. Nutr., 2013, 53, 180-197. doi: 10.1080/10408398.2010.520098

40. Madeira J.V., Macedo J.A., Macedo G.A. Detoxification of castor bean residues and the simultaneous production of tannase and phytase by solid-state fermentation using Paecilomyces variotii. Bioresour. Technol., 2011, 102, 7343-7348. doi: 10.1016/J.BIORTECH.2011.04.099

41. Jansman A.J.M. Tannins in feedstuffs for simple-stomached animals. Nutr. Res. Rev., 1993, 6, 209-236. doi:10.1079/NRR19930013



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA