BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 14-24; DOI 10.21519/0234-2758-2021-37-6-14-24
О.А. Osintseva1, N.N. Gessler1, E.P. Isakova1, and Yu.I. Deryabina1*

Natural Stilbene Polyphenols as Yarrowia lipolytica Cell Cytoprotectors at Heat Stress

1A. N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy, Moscow, 119071 Russia

*yul_der@mail.ru
Received - 25.08.2021; Accepted - 28.10.2021

REFERENCES

1. Teplova V.V., Isakova E.P., Klein O.I., et al. Natural polyphenols: biological activity, pharmacological potential, means of metabolic engineering (review). Applied Biochemistry and Microbiology, 2018. 54(3), 221-237. doi: 10.1134/S0003683818030146

2. Mazo V.К., Sydorova Yu.S., Sarkisyan V.А., et al. Perspektivy ispolsovaniya rastitelnih polyphenolov v kachestve funkcionalnih pischevih ingredientov. Voprosy pitaniya, 2018, 87(6), 57-66. doi: 10.24411/0042-8833-2018-10067

3. Arruda H.S., Neri-Numa I.A., Kido L.A., et al. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J. Funct. Foods, 2020, 75(12), 104203. doi:10.1016/j.jff.2020.104203

4. Rasines-Perea Z., Teissedre P.L. Grape Polyphenols' Effects in Human Cardiovascular Diseases and Diabetes. Molecules, 2017, 22(1), 68. doi: 10.3390/molecules22010068

5. Fraga C.G., Croft K.D., Kennedy D.O., Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct., 2019, 10(2), 514-528. doi: 10.1039/c8fo01997e

6. Arora I., Sharma M., Tollefsbol T.O. Combinatorial Epigenetics Impact of Polyphenols and Phytochemicals in Cancer Prevention and Therapy. Int .J. Mol. Sci., 2019, 20(18), 4567. doi: 10.3390/ijms20184567

7. Yang A.J.T., Bagit A., MacPherson R.E.K. Resveratrol, Metabolic Dysregulation, and Alzheimer's Disease: Considerations for Neurogenerative Disease. Review. Int. J. Mol. Sci., 2021, 22(9), 4628. doi: 10.3390/ijms22094628

8. Vestergaard M., Ingmer H. Antibacterial and antifungal properties of resveratrol. Int. J. Antimicrob. Agents, 2019, 53(6), 716-723. doi: 10.1016/j.ijantimicag.2019.02.015.

9. Abedini E., Khodadadi E., Zeinalzadeh E., et al. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. Evid. Based Complement Alternat. Med., 2021, 8866311. doi: 10.1155/2021/8866311.

10. Ma D.S.L., Tan L.T., Chan K.G., et al. Resveratrol-Potential Antibacterial Agent against Foodborne Pathogens. Front. Pharmacol., 2018, 9, 102. doi: 10.3389/fphar.2018.00102

11. Shevelev A.B., La Porta N., Isakova E.P., et al. In Vivo Antimicrobial and Wound-Healing Activity of Resveratrol, Dihydroquercetin and Dihydromyricetin against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. Pathogens, 2020, 9, 296. doi: 10.3390/pathogens9040296

12. Gavrilov А.B., Goryainov S.I., Marinichev А.А. et al. Poplyphenol composition in the samples from russian conifers. Khimija rastitel'nogo syr'ja. 2019, 2, 51-58. doi: 10.14258/jcprm.2019024260

13. Oesterle I., Braun D., Berry D., et al. Polyphenol Exposure, Metabolism, and Analysis: A Global Exposomics Perspective. Annu. Rev. Food Sci. Technol. 2021, 12, 461-484. doi: 10.1146/annurev-food-062220-090807

14. Kumar S., Pandey A.K. Chemistry and biological activities of flavonoids: an overview. Sci. World J., 2013, 162750, doi: 10.1155/2013/162750

15. Oh J., Jang C.H., Kim J.S. Soy-derived phytoalexins: mechanism of in vivo biological effectiveness in spite of their low bioavailability. Food Sci. Biotechnol., 2018, 28(1), 1-6. doi: 10.1007/s10068-018-0498-7

16. Guerrero R.F., Garcia-Parrilla M.C., Puertas B., Cantos-Villar E. Wine, resveratrol and health: A review. Nat. Prod. Commun., 2009, 4, 635-658

17. Modak M., Dixit P., Londhe J., et al. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-73. doi: 10.3164/jcbn.40.163

18. Fedorova T.Y., Fedorov S.V., Babkin V.A. Phenolic compounds of cedar wood (siberian pine) Pinus sibirica du tour. Khimija rastitel'nogo syr'ja. 2020, 3, 97-104. doi: 10.14258/jcpim.2020037329

19. Khan Z.A., Iqbal A., Shahzad S.A. Synthetic approaches toward stilbenes and their related structures. Mol. Divers, 2017, 21, 483-509. https://doi.org/10.1007/s11030-017-9736-9

20. Mattio L., Catinella G., Iriti M., Vallone L. Inhibitory activity of stilbenes against filamentous fungi. Ital. J. Food. Saf., 2021, 10(1), 8461. doi: 10.4081/ijfs.2021.8461

21. Lee J, Lee D.G. Novel antifungal mechanism of resveratrol: apoptosis inducer in Candida albicans. Curr. Microbiol., 2015, 70(3), 383-389. oi: 10.1007/s00284-014-0734-1

22. Kolouchová I., Maťátková O., Paldrychová M., et al. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol (Praha) , 2018, 63(3), 261-272. doi: 10.1007/s12223-017-0549-0

23. Li Y.Q., Li Z.L., Zhao W.J., et al. Synthesis of stilbene derivatives with inhibition of SARS coronavirus replication. Eur. J. Med. Chem., 2006, 41(9), 1084-1089. doi: 10.1016/j.ejmech.2006.03.024

24. Gligorijeviс N., Stani´c-Vuˇciniс D., Radomiroviс M., et al. Role of Resveratrol in Prevention and Control of Cardiovascular Disorders and Cardiovascular Complications Related to COVID-19 Disease: Mode of Action and Approaches Explored to Increase Its Bioavailability. Molecules, 2021, 26, 2834. https://doi.org/10.3390/molecules26102834

25. Koskela A., Reinisalo M., Hyttinen J.M., et al. Pinosylvin-mediated protection against oxidative stress in human retinal pigment epithelial cells. Mol. Vis., 2014, 20, 760-769.

26. Park J., Pyee J., Park H. Pinosylvin at a high concentration induces AMPK-mediated autophagy for preventing necrosis in bovine aortic endothelial cells. Can. J. Physiol. Pharmacol., 2014, 92(12), 993-999. https://doi.org/10.1139/cjpp-2014-0271

27. Kivimäki K., Leppänen T., Hämäläinen M., et al. Pinosylvin Shifts Macrophage Polarization to Support Resolution of Inflammation. Molecules. 2021, 26(9), 2772. doi: 10.3390/molecules26092772

28. Laavola M., Nieminen R., Leppänen T., et al. Pinosylvin and monomethylpinosylvin, constituents of an extract from the knot of Pinus sylvestris, reduce inflammatory gene expression and inflammatory responses in vivo. J. Agric Food Chem., 2015, 63(13), 3445-3453. doi: 10.1021/jf504606m

29. Laavola M., Leppänen T., Hämäläinen M., et al. IL-6 in Osteoarthritis: Effects of Pine Stilbenoids. Molecules, 2019, 24(1), 109. doi:10.3390/molecules24010109

30. Vorob'eva L.I., Khodzhaev E.Y., Novikova T.M., Chudinova E.M. Antistress cross-effects of extracellular metabolites of bacteria, archaea, and yeasts: a review, Applied Biochemistry and Microbiology, 2013, 49(4), 323-332. doi:10.7868/80555109913040144

31. Nicaud J.M. Yarrowia lipolytica. Yeast, 2012, 29(10), 409-18. doi: 10.1002/yea.2921

32. Ramos-Gomez M., Olivares-Marin I.K., Canizal-García M., et al. Resveratrol induces mitochondrial dysfunction and decreases chronological life span of Saccharomyces cerevisiae in a glucose-dependent manner, J. Bioenerg. Biomembr., 2017, 49(3), 241-251. doi: 10.1007/s10863-017-9709-9

33. Orlandi I., Stamerra G., Strippoli M., Vai M. During yeast chronological aging resveratrol supplementation results in a short-lived phenotype Sir2-dependent. Redox Biol., 2017, 12, 745 - 754. https://doi.org/10.1016/j. redox.2017.04.015

34. Olivares-Marin I.K., González-Hernández J.C., Madrigal-Perez L.A., Resveratrol cytotoxicity is energy-dependent, J. Food Biochem., 2019, 43(9), e13008. doi: 10.1111/jfbc.13008

35. Lysak V.V., Geldakova R.А. Mikrobiologiya: metodicheskie rekomendatcii k laboratornim zanyatiyam i kontrol samostoyatelnoy raboty studentov - М.: BGU, 2002

36. Kostyuk V.A., Potapovich A.I., Kovaleva Zh.V. A simple and sensitive method of determination of superoxide dismutase activity based on the reaction of quercetin oxidation, Biomeditsinskaya Khimiya, 1990, 36(2), 88-91

37. Rogov А. G., Sukhanova Е. I., Uralskaya L. А., et al. Alternativnaya oksidasa: rasprostranenie, induktsiya, svoistva, struktura, regulyatsia, funktcii, Uspehy biologicheskoy khimii, 54, 2014, 413-456

38. Ezhova G.P., Arinbasarova A.Yu., Smirnov V.F., Guseva E.V. Influence of oxidizing, thermal and ethanol stresses on survival rate of yeast Yarrowia lipolytica, Vestnik of lobachevsky university of nizhni novgorod, 2010, 6, 113-118

39. Workman M., Holt P., Thykaer J. Comparing cellular performance of Yarrowia lipolytica during growth on glucose and glycerol in submerged cultivations. AMB Express, 2013, 3(1), 58. doi: 10.1186/2191-0855-3-58

40. Jhanji M., Rao C.N., Sajish, M. Towards resolving the enigma of the dichotomy of resveratrol: cis- and trans-resveratrol have opposite effects on TyrRS-regulated PARP1 activation. Gerosciense, 2021, 43, 1171-1200. https://doi.org/10.1007/s11357-020-00295-w

41. Dergacheva D.I., Mashkova A.A., Isakova E.P. et al. Influence of resveratrol and dihydroquercetin on physiological and biochemical parameters of the poly-extremophilic yeast Yarrowia lipolytica under temperature stress, 2019, Applied Biochemistry and Microbiology, 55(2), 152-158. doi: 10.1134/S0555109919020041

42. Chan M.M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin, Biochem. Pharmacol., 2002, 63, 99-104. doi: 10.1016/s0006-2952(01)00886-3

43. Wang W-B., Lai H-C., Hsueh P-R., et al. Inhibition of swarming and virulence factor expression in Proteus mirabilis by resveratrol, J. Med. Microbiol, 2006, 55, 1313-1321. doi: 10.1099/jmm.0.46661-0

44. Bertelli A. A., Ferrara F., Diana G., et al. Resveratrol, a natural stilbene in grapes and wine, enhances intraphagocytosis in human promonocytes: a co-factor in antiinflammatory and anticancer chemopreventiveactivity, Int. J. Tissue React.,1999, 21, 93-104.



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA