|
Vol 37(2021) N 6 p. 5-13; DOI 10.21519/0234-2758-2021-37-6-5-13 A.A. Poloznikov1,2*, S.V. Nikulin1,2, and B.YA. Alekseev1 Dormant Cancer Cells: Molecular Features, in vitro Models, and Identification Methods 1P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, Moscow, 125284, Russia2Faculty of Biology and Biotechnology, Higher School of Economics National Research University, Moscow, 101000, Russia *apoloznikov@hse.ru Received - 21.10.2021; Accepted - 12.11.2021 REFERENCES 1. Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147, 275-292. doi: 10.1016/j.cell.2011.09.024 2. Hosseini H., Obradović M.M.S., Hoffmann M., et al. Early dissemination seeds metastasis in breast cancer. Nature, 2016, 540, 552-558. doi: 10.1038/nature20785 3. Damen M.P.F., Rheenen J., Scheele C.L.G.J. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J., 2021, 288(21), 6286-6303. doi: 10.1111/febs.15626 4. Klein C.A. Framework models of tumor dormancy from patient-derived observations. Curr. Opin. Genet. Dev., 2011, 21, 42-49. doi: 10.1016/j.gde.2010.10.011 5. Buczacki S.J.A., Popova S., Biggs E., et al. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J. Exp. Med., 2018, 215, 1891-1912. doi: 10.1084/jem.20171385 6. Selli C., Turnbull A.K., Pearce D.A., et al. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res., 2019, 21, 2. doi: 10.1186/s13058-018-1089-5 7. Correia A.L., Guimaraes J.C., Auf der Maur P., et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021, 594, 566-571. doi: 10.1038/s41586-021-03614-z 8. Fox D.B., Garcia N.M.G., McKinney B.J., et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab., 2020, 2, 318-334. doi: 10.1038/s42255-020-0191-z 9. Yeh A.C., Ramaswamy S. Mechanisms of cancer cell dormancy - another hallmark of cancer? Cancer Res., 2015, 75, 5014-5022. doi: 10.1158/0008-5472.CAN-15-1370 10. Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer, 2014, 14, 611-622. doi: 10.1038/nrc3793 11. Huemer M., Mairpady Shambat S., Bergada-Pijuan J., et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc. Natl. Acad. Sci. USA, 2021, 118, e2014920118. doi: 10.1073/pnas.2014920118 12. Lapidot T., Sirard C., Vormoor J., et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645-648. doi: 10.1038/367645a0 13. Al-Hajj M., Wicha M.S., Benito-Hernandez A., et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 3983-3988. doi: 10.1073/pnas.0530291100 14. Clevers H. The cancer stem cell: premises, promises and challenges. Nat. Med., 2011, 17, 313-319. doi: 10.1038/nm.2304 15. Sosa M.S., Parikh F., Maia A.G., et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun., 2015, 6, 6170. doi: 10.1038/ncomms7170 16. Khoo W.H., Ledergor G., Weiner A., et al. A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood, 2019, 134, 30-43. doi: 10.1182/blood.2018880930 17. Naumov G.N., Townson J.L., MacDonald I.C., et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat., 2003, 82, 199-206. doi: 10.1023/B:BREA.0000004377.12288.3c 18. Ranganathan A.C., Zhang L., Adam A.P., Aguirre-Ghiso J.A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res., 2006, 66, 1702-1711. doi: 10.1158/0008-5472.CAN-05-3092 19. Minassian L.M., Cotechini T., Huitema E., Graham C.H. Hypoxia-induced resistance to chemotherapy in cancer. Adv. Exp. Med. Biol. Eds. Gilkes D. Springer International Publishing, Cham, 2019, 1136, 123-139. doi: 10.1007/978-3-030-12734-3_9 20. Johnson D.B., Nixon M.J., Wang Y., Wang D.Y., et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight, 2018, 3, 1-18. doi: 10.1172/jci.insight.120360 21. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov., 2015, 5, 915-919. doi: 10.1158/2159-8290.CD-15-0563 22. Carlson P., Dasgupta A., Grzelak C.A., et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol., 2019, 21, 238-250. doi: 10.1038/s41556-018-0267-0 23. Aguirre-Ghiso J.A., Estrada Y., Liu D., Ossowski L. ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer Res., 2003, 63, 1684-1695. doi: 10.1016/j.urolonc.2003.12.012 24. Zhang W., Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12, 9-18. doi: 10.1038/sj.cr.7290105 25. Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26, 3279-3290. doi: 10.1038/sj.onc.1210421 26. Sosa M.S., Avivar-Valderas A., Bragado P., et al. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin. Cancer Res., 2011, 17, 5850-5857. doi: 10.1158/1078-0432.CCR-10-2574 27. Adam A.P., George A., Schewe D., et al. Computational identification of a p38 SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res., 2009, 69, 5664-5672. doi: 10.1158/0008-5472.CAN-08-3820 28. Viale A., Pettazzoni P., Lyssiotis C.A., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632. doi: 10.1038/nature13611 29. Havas K.M., Milchevskaya V., Radic K., et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J. Clin. Invest., 2017, 127, 2091-2105. doi: 10.1172/JCI8991 30. O'Connell M.A., Hayes J.D. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem. Soc. Trans., 2015, 43, 687-689. doi: 10.1042/BST20150069 31. Takahashi A., Ohtani N., Yamakoshi K., et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol., 2006, 8, 1291-1297. doi: 10.1038/ncb1491 32. Coller H.A., Sang L., Roberts J.M. A new description of cellular quiescence. PLoS Biol., 2006, 4, e83. doi: 10.1371/journal.pbio.0040083 33. Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot., 2016, 67, 3189-3203. doi: 10.1093/jxb/erw138 34. Peppicelli S., Andreucci E., Ruzzolini J., et al. The acidic microenvironment as a possible niche of dormant tumor cells. Cell. Mol. Life Sci., 2017, 74, 2761-2771. doi: 10.1007/s00018-017-2496-y 35. Kienast Y., von Baumgarten L., Fuhrmann M., et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med., 2010, 16, 116-122. doi: 10.1038/nm.2072 36. Ghajar C.M., Peinado H., Mori H., et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol., 2013, 15, 807-817. doi: 10.1038/ncb2767 37. Park S.-Y., Nam J.-S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med., 2020, 52, 569-581. doi: 10.1038/s12276-020-0423-z 38. Barkan D., Green J.E., Chambers A.F. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur. J. Cancer., 2010, 46, 1181-1188. doi: 10.1016/j.ejca.2010.02.027 39. Grzelak C.A., Ghajar C.M. Metastasis 'systems' biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Curr. Opin. Cell Biol., 2017, 48, 79-86. doi: 10.1016/j.ceb.2017.06.002 40. Pisco A.O., Brock A., Zhou J., et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun., 2013, 4, 2467. doi: 10.1038/ncomms3467 41. Teng M.W.L., Swann J.B., Koebel C.M., et al. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol., 2008, 84, 988-993. doi: 10.1189/jlb.1107774 42. Machida H., De Zoysa M.Y., Takiuchi T., et al. Significance of monocyte counts at recurrence on survival outcome of women with endometrial cancer. Int. J. Gynecol. Cancer, 2017, 27, 302-310. doi: 10.1097/IGC.0000000000000865 43. Hughes R., Qian B.-Z., Rowan C., et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res., 2015, 75, 3479-3491. doi: 10.1158/0008-5472.CAN-14-3587 44. Bowers L.W., Maximo I.X.F., Brenner A.J., et al. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res., 2014, 74, 4446-4457. doi: 10.1158/0008-5472.CAN-13-3603 45. Deng X., Ewton D.Z., Friedman E. Mirk/Dyrk1B maintains the viability of quiescent pancreatic cancer cells by reducing levels of reactive oxygen species. Cancer Res., 2009, 69, 3317-3324. doi: 10.1158/0008-5472.CAN-08-2903 46. Gómez-Cuadrado L., Tracey N., Ma R., et al. Mouse models of metastasis: progress and prospects. Dis. Model. Mech., 2017, 10, 1061-1074. doi: 10.1242/dmm.030403 47. Zhang X.H.-F., Jin X., Malladi S., et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell, 2013, 154, 1060-1073. doi: 10.1016/j.cell.2013.07.036 48. Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett., 2010, 294, 139-146. doi: 10.1016/j.canlet.2010.03.004 49. Linde N., Fluegen G., Aguirre-Ghiso J.A. The relationship between dormant cancer cells and their microenvironment. Adv. Cancer Res., 2016, 132, 45-71. doi: 10.1016/bs.acr.2016.07.002 50. Clark A.M., Kumar M.P., Wheeler S.E., et al. A model of dormant-emergent metastatic breast cancer progression enabling exploration of biomarker signatures. Mol. Cell. Proteomics, 2018, 17, 619-630. doi: 10.1074/mcp.RA117.000370 51. Brackstone M., Townson J.L., Chambers A.F. Tumour dormancy in breast cancer: an update. Breast Cancer Res., 2007, 9, 208. doi: 10.1186/bcr1677 52. Pradhan S., Sperduto J.L., Farino C.J., Slater J.H. Engineered in vitro models of tumor dormancy and reactivation. J. Biol. Eng., 2018, 12, 37. doi: 10.1186/s13036-018-0120-9 53. Corthay A., Bakacs T., Thangavelu G., Anderson C.C. Tackling cancer cell dormancy: insights from immune models, and transplantation. Semin. Cancer Biol., 2021, S1044-579X(21)00025-0 doi: 10.1016/j.semcancer.2021.02.002 54. Francies H.E., Garnett M.J. What role could organoids play in the personalization of cancer treatment? Pharmacogenomics, 2015, 16, 1523-1526. doi: 10.2217/pgs.15.114 55. Drost J., Clevers H. Organoids in cancer research. Nat. Rev. Cancer, 2018, 18, 407-418. doi: 10.1038/s41568-018-0007-6 56. Fujii M., Shimokawa M., Date S., et al. A colorectal tumor organoid library demonstrates progressive loss of Niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18, 827-838. doi: 10.1016/j.stem.2016.04.003 57. Sachs N., de Ligt J., Kopper O., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172, 373-386.e10. doi: 10.1016/j.cell.2017.11.010 58.Sato T., Stange D.E., Ferrante M., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141, 1762-1772. doi: 10.1053/j.gastro.2011.07.050 59. de Witte C.J., Espejo Valle-Inclan J., Hami N., et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep., 2020, 31, 107762. doi: 10.1016/j.celrep.2020.107762 60. Kim M., Mun H., Sung C.O., et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun., 2019, 10, 3991. doi: 10.1038/s41467-019-11867-6 61. Ooft S.N., Weeber F., Dijkstra K.K., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. , 2019, 11, eaay2574. doi: 10.1126/scitranslmed.aay2574 62. Karthaus W.R., Hofree M., Choi D., et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 2020, 368, 497-505. doi: 10.1126/science.aay0267 63. Fan H., Demirci U., Chen P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol., 2019, 12, 142. doi: 10.1186/s13045-019-0832-4 64. Multimodal Optical Diagnostics of Cancer. Eds Tuchin V.V., Popp J., Zakharov V. Springer International Publishing, Cham, 2020. doi: 10.1007/978-3-030-44594-2 65. Chiorazzo M.G., Tunset H.M., Popov A. V., Johansen B., Moestue S., Delikatny E.J. Detection and differentiation of breast cancer sub-types using a cPLA2α activatable fluorophore. Sci. Rep., 2019, 9, 6122. doi: 10.1038/s41598-019-41626-y 66. Visvader J.E., Lindeman G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8, 755-768. doi: 10.1038/nrc2499 67. Richardson D.S., Lichtman J.W. Clarifying tissue clearing. Cell, 2015, 162, 246-257. doi: 10.1016/j.cell.2015.06.067 68. Oliveira L.M.C., Tuchin V.V. The Optical Clearing Method. Springer International Publishing, Cham, 2019. doi: 10.1007/978-3-030-33055-2 69. Duong H., Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods, 2013, 220, 46-54. doi: 10.1016/j.jneumeth.2013.08.018 70. Clancy B., Cauller L. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J. Neurosci. Methods, 1998, 83, 97-102. doi: 10.1016/S0165-0270(98)00066-1 71. Zimmermann T. Spectral imaging and linear unmixing in light microscopy. Microscopy Techniques. Advances in Biochemical Engineering. Ed. Rietdorf J. Springer International Publishing, Berlin. 2005, 95, 245-265. doi: 10.1007/b102216 72. Tuchin V. V. Light propagation in tissues with controlled optical properties. J. Biomed. Opt., 1997, 2, 401. doi: 10.1117/12.281502 73. Tuchin V. V. Optical Clearing of Tissues and Blood. SPIE.Digital Lbrary, 2005. doi: 10.1117/3.637760 74. Lawson M.A., McDonald M.M., Kovacic N., et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun., 2015, 6, 8983. doi: 10.1038/ncomms9983 75. Sandercock A.M., Rust S., Guillard S., et al. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling. Mol. Cancer, 2015, 14, 147. doi: 10.1186/s12943-015-0415-0 76. Badder L.M., Hollins A.J., Herpers B., et al. 3D imaging of colorectal cancer organoids identifies responses to tankyrase inhibitors. PLoS One, 2020, 15, e0235319. doi: 10.1371/journal.pone.0235319 77. Chambers A.F., MacDonald I.C., Schmidt E.E., et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev., 1995, 14, 279-301. doi: 10.1007/BF00690599 78. Sipkins D.A., Wei X., Wu J.W., et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 2005, 435, 969-973. doi: 10.1038/nature03703 79. Hawkins E.D., Duarte D., Akinduro O., et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 2016, 538, 518-522. doi: 10.1038/nature19801 |