BIOTECHNOLOGY-HEADER

RUS

      

ENG

Vol 37(2021) N 6 p. 5-13; DOI 10.21519/0234-2758-2021-37-6-5-13
A.A. Poloznikov1,2*, S.V. Nikulin1,2, and B.YA. Alekseev1

Dormant Cancer Cells: Molecular Features, in vitro Models, and Identification Methods

1P. Hertsen Moscow Oncology Research Institute, National Medical Research Radiological Centre, Ministry of Health of the Russian Federation, Moscow, 125284, Russia
2Faculty of Biology and Biotechnology, Higher School of Economics National Research University, Moscow, 101000, Russia

*apoloznikov@hse.ru
Received - 21.10.2021; Accepted - 12.11.2021

REFERENCES

1. Valastyan S., Weinberg R.A. Tumor metastasis: molecular insights and evolving paradigms. Cell, 2011, 147, 275-292. doi: 10.1016/j.cell.2011.09.024

2. Hosseini H., Obradović M.M.S., Hoffmann M., et al. Early dissemination seeds metastasis in breast cancer. Nature, 2016, 540, 552-558. doi: 10.1038/nature20785

3. Damen M.P.F., Rheenen J., Scheele C.L.G.J. Targeting dormant tumor cells to prevent cancer recurrence. FEBS J., 2021, 288(21), 6286-6303. doi: 10.1111/febs.15626

4. Klein C.A. Framework models of tumor dormancy from patient-derived observations. Curr. Opin. Genet. Dev., 2011, 21, 42-49. doi: 10.1016/j.gde.2010.10.011

5. Buczacki S.J.A., Popova S., Biggs E., et al. Itraconazole targets cell cycle heterogeneity in colorectal cancer. J. Exp. Med., 2018, 215, 1891-1912. doi: 10.1084/jem.20171385

6. Selli C., Turnbull A.K., Pearce D.A., et al. Molecular changes during extended neoadjuvant letrozole treatment of breast cancer: distinguishing acquired resistance from dormant tumours. Breast Cancer Res., 2019, 21, 2. doi: 10.1186/s13058-018-1089-5

7. Correia A.L., Guimaraes J.C., Auf der Maur P., et al. Hepatic stellate cells suppress NK cell-sustained breast cancer dormancy. Nature, 2021, 594, 566-571. doi: 10.1038/s41586-021-03614-z

8. Fox D.B., Garcia N.M.G., McKinney B.J., et al. NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nat. Metab., 2020, 2, 318-334. doi: 10.1038/s42255-020-0191-z

9. Yeh A.C., Ramaswamy S. Mechanisms of cancer cell dormancy - another hallmark of cancer? Cancer Res., 2015, 75, 5014-5022. doi: 10.1158/0008-5472.CAN-15-1370

10. Sosa M.S., Bragado P., Aguirre-Ghiso J.A. Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat. Rev. Cancer, 2014, 14, 611-622. doi: 10.1038/nrc3793

11. Huemer M., Mairpady Shambat S., Bergada-Pijuan J., et al. Molecular reprogramming and phenotype switching in Staphylococcus aureus lead to high antibiotic persistence and affect therapy success. Proc. Natl. Acad. Sci. USA, 2021, 118, e2014920118. doi: 10.1073/pnas.2014920118

12. Lapidot T., Sirard C., Vormoor J., et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994, 367, 645-648. doi: 10.1038/367645a0

13. Al-Hajj M., Wicha M.S., Benito-Hernandez A., et al. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA, 2003, 100, 3983-3988. doi: 10.1073/pnas.0530291100

14. Clevers H. The cancer stem cell: premises, promises and challenges. Nat. Med., 2011, 17, 313-319. doi: 10.1038/nm.2304

15. Sosa M.S., Parikh F., Maia A.G., et al. NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nat. Commun., 2015, 6, 6170. doi: 10.1038/ncomms7170

16. Khoo W.H., Ledergor G., Weiner A., et al. A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood, 2019, 134, 30-43. doi: 10.1182/blood.2018880930

17. Naumov G.N., Townson J.L., MacDonald I.C., et al. Ineffectiveness of doxorubicin treatment on solitary dormant mammary carcinoma cells or late-developing metastases. Breast Cancer Res. Treat., 2003, 82, 199-206. doi: 10.1023/B:BREA.0000004377.12288.3c

18. Ranganathan A.C., Zhang L., Adam A.P., Aguirre-Ghiso J.A. Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res., 2006, 66, 1702-1711. doi: 10.1158/0008-5472.CAN-05-3092

19. Minassian L.M., Cotechini T., Huitema E., Graham C.H. Hypoxia-induced resistance to chemotherapy in cancer. Adv. Exp. Med. Biol. Eds. Gilkes D. Springer International Publishing, Cham, 2019, 1136, 123-139. doi: 10.1007/978-3-030-12734-3_9

20. Johnson D.B., Nixon M.J., Wang Y., Wang D.Y., et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight, 2018, 3, 1-18. doi: 10.1172/jci.insight.120360

21. Ribas A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov., 2015, 5, 915-919. doi: 10.1158/2159-8290.CD-15-0563

22. Carlson P., Dasgupta A., Grzelak C.A., et al. Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nat. Cell Biol., 2019, 21, 238-250. doi: 10.1038/s41556-018-0267-0

23. Aguirre-Ghiso J.A., Estrada Y., Liu D., Ossowski L. ERKMAPK activity as a determinant of tumor growth and dormancy; regulation by p38SAPK. Cancer Res., 2003, 63, 1684-1695. doi: 10.1016/j.urolonc.2003.12.012

24. Zhang W., Liu H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res., 2002, 12, 9-18. doi: 10.1038/sj.cr.7290105

25. Dhillon A.S., Hagan S., Rath O., Kolch W. MAP kinase signalling pathways in cancer. Oncogene, 2007, 26, 3279-3290. doi: 10.1038/sj.onc.1210421

26. Sosa M.S., Avivar-Valderas A., Bragado P., et al. ERK1/2 and p38α/β signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin. Cancer Res., 2011, 17, 5850-5857. doi: 10.1158/1078-0432.CCR-10-2574

27. Adam A.P., George A., Schewe D., et al. Computational identification of a p38 SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res., 2009, 69, 5664-5672. doi: 10.1158/0008-5472.CAN-08-3820

28. Viale A., Pettazzoni P., Lyssiotis C.A., et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature, 2014, 514, 628-632. doi: 10.1038/nature13611

29. Havas K.M., Milchevskaya V., Radic K., et al. Metabolic shifts in residual breast cancer drive tumor recurrence. J. Clin. Invest., 2017, 127, 2091-2105. doi: 10.1172/JCI8991

30. O'Connell M.A., Hayes J.D. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem. Soc. Trans., 2015, 43, 687-689. doi: 10.1042/BST20150069

31. Takahashi A., Ohtani N., Yamakoshi K., et al. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol., 2006, 8, 1291-1297. doi: 10.1038/ncb1491

32. Coller H.A., Sang L., Roberts J.M. A new description of cellular quiescence. PLoS Biol., 2006, 4, e83. doi: 10.1371/journal.pbio.0040083

33. Considine M.J., Considine J.A. On the language and physiology of dormancy and quiescence in plants. J. Exp. Bot., 2016, 67, 3189-3203. doi: 10.1093/jxb/erw138

34. Peppicelli S., Andreucci E., Ruzzolini J., et al. The acidic microenvironment as a possible niche of dormant tumor cells. Cell. Mol. Life Sci., 2017, 74, 2761-2771. doi: 10.1007/s00018-017-2496-y

35. Kienast Y., von Baumgarten L., Fuhrmann M., et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat. Med., 2010, 16, 116-122. doi: 10.1038/nm.2072

36. Ghajar C.M., Peinado H., Mori H., et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol., 2013, 15, 807-817. doi: 10.1038/ncb2767

37. Park S.-Y., Nam J.-S. The force awakens: metastatic dormant cancer cells. Exp. Mol. Med., 2020, 52, 569-581. doi: 10.1038/s12276-020-0423-z

38. Barkan D., Green J.E., Chambers A.F. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur. J. Cancer., 2010, 46, 1181-1188. doi: 10.1016/j.ejca.2010.02.027

39. Grzelak C.A., Ghajar C.M. Metastasis 'systems' biology: how are macro-environmental signals transmitted into microenvironmental cues for disseminated tumor cells? Curr. Opin. Cell Biol., 2017, 48, 79-86. doi: 10.1016/j.ceb.2017.06.002

40. Pisco A.O., Brock A., Zhou J., et al. Non-Darwinian dynamics in therapy-induced cancer drug resistance. Nat. Commun., 2013, 4, 2467. doi: 10.1038/ncomms3467

41. Teng M.W.L., Swann J.B., Koebel C.M., et al. Immune-mediated dormancy: an equilibrium with cancer. J. Leukoc. Biol., 2008, 84, 988-993. doi: 10.1189/jlb.1107774

42. Machida H., De Zoysa M.Y., Takiuchi T., et al. Significance of monocyte counts at recurrence on survival outcome of women with endometrial cancer. Int. J. Gynecol. Cancer, 2017, 27, 302-310. doi: 10.1097/IGC.0000000000000865

43. Hughes R., Qian B.-Z., Rowan C., et al. Perivascular M2 macrophages stimulate tumor relapse after chemotherapy. Cancer Res., 2015, 75, 3479-3491. doi: 10.1158/0008-5472.CAN-14-3587

44. Bowers L.W., Maximo I.X.F., Brenner A.J., et al. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res., 2014, 74, 4446-4457. doi: 10.1158/0008-5472.CAN-13-3603

45. Deng X., Ewton D.Z., Friedman E. Mirk/Dyrk1B maintains the viability of quiescent pancreatic cancer cells by reducing levels of reactive oxygen species. Cancer Res., 2009, 69, 3317-3324. doi: 10.1158/0008-5472.CAN-08-2903

46. Gómez-Cuadrado L., Tracey N., Ma R., et al. Mouse models of metastasis: progress and prospects. Dis. Model. Mech., 2017, 10, 1061-1074. doi: 10.1242/dmm.030403

47. Zhang X.H.-F., Jin X., Malladi S., et al. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell, 2013, 154, 1060-1073. doi: 10.1016/j.cell.2013.07.036

48. Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett., 2010, 294, 139-146. doi: 10.1016/j.canlet.2010.03.004

49. Linde N., Fluegen G., Aguirre-Ghiso J.A. The relationship between dormant cancer cells and their microenvironment. Adv. Cancer Res., 2016, 132, 45-71. doi: 10.1016/bs.acr.2016.07.002

50. Clark A.M., Kumar M.P., Wheeler S.E., et al. A model of dormant-emergent metastatic breast cancer progression enabling exploration of biomarker signatures. Mol. Cell. Proteomics, 2018, 17, 619-630. doi: 10.1074/mcp.RA117.000370

51. Brackstone M., Townson J.L., Chambers A.F. Tumour dormancy in breast cancer: an update. Breast Cancer Res., 2007, 9, 208. doi: 10.1186/bcr1677

52. Pradhan S., Sperduto J.L., Farino C.J., Slater J.H. Engineered in vitro models of tumor dormancy and reactivation. J. Biol. Eng., 2018, 12, 37. doi: 10.1186/s13036-018-0120-9

53. Corthay A., Bakacs T., Thangavelu G., Anderson C.C. Tackling cancer cell dormancy: insights from immune models, and transplantation. Semin. Cancer Biol., 2021, S1044-579X(21)00025-0 doi: 10.1016/j.semcancer.2021.02.002

54. Francies H.E., Garnett M.J. What role could organoids play in the personalization of cancer treatment? Pharmacogenomics, 2015, 16, 1523-1526. doi: 10.2217/pgs.15.114

55. Drost J., Clevers H. Organoids in cancer research. Nat. Rev. Cancer, 2018, 18, 407-418. doi: 10.1038/s41568-018-0007-6

56. Fujii M., Shimokawa M., Date S., et al. A colorectal tumor organoid library demonstrates progressive loss of Niche factor requirements during tumorigenesis. Cell Stem Cell, 2016, 18, 827-838. doi: 10.1016/j.stem.2016.04.003

57. Sachs N., de Ligt J., Kopper O., et al. A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 2018, 172, 373-386.e10. doi: 10.1016/j.cell.2017.11.010

58.Sato T., Stange D.E., Ferrante M., et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology, 2011, 141, 1762-1772. doi: 10.1053/j.gastro.2011.07.050

59. de Witte C.J., Espejo Valle-Inclan J., Hami N., et al. Patient-derived ovarian cancer organoids mimic clinical response and exhibit heterogeneous inter- and intrapatient drug responses. Cell Rep., 2020, 31, 107762. doi: 10.1016/j.celrep.2020.107762

60. Kim M., Mun H., Sung C.O., et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat. Commun., 2019, 10, 3991. doi: 10.1038/s41467-019-11867-6

61. Ooft S.N., Weeber F., Dijkstra K.K., et al. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Transl. Med. , 2019, 11, eaay2574. doi: 10.1126/scitranslmed.aay2574

62. Karthaus W.R., Hofree M., Choi D., et al. Regenerative potential of prostate luminal cells revealed by single-cell analysis. Science, 2020, 368, 497-505. doi: 10.1126/science.aay0267

63. Fan H., Demirci U., Chen P. Emerging organoid models: leaping forward in cancer research. J. Hematol. Oncol., 2019, 12, 142. doi: 10.1186/s13045-019-0832-4

64. Multimodal Optical Diagnostics of Cancer. Eds Tuchin V.V., Popp J., Zakharov V. Springer International Publishing, Cham, 2020. doi: 10.1007/978-3-030-44594-2

65. Chiorazzo M.G., Tunset H.M., Popov A. V., Johansen B., Moestue S., Delikatny E.J. Detection and differentiation of breast cancer sub-types using a cPLA2α activatable fluorophore. Sci. Rep., 2019, 9, 6122. doi: 10.1038/s41598-019-41626-y

66. Visvader J.E., Lindeman G.J. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat. Rev. Cancer, 2008, 8, 755-768. doi: 10.1038/nrc2499

67. Richardson D.S., Lichtman J.W. Clarifying tissue clearing. Cell, 2015, 162, 246-257. doi: 10.1016/j.cell.2015.06.067

68. Oliveira L.M.C., Tuchin V.V. The Optical Clearing Method. Springer International Publishing, Cham, 2019. doi: 10.1007/978-3-030-33055-2

69. Duong H., Han M. A multispectral LED array for the reduction of background autofluorescence in brain tissue. J. Neurosci. Methods, 2013, 220, 46-54. doi: 10.1016/j.jneumeth.2013.08.018

70. Clancy B., Cauller L. Reduction of background autofluorescence in brain sections following immersion in sodium borohydride. J. Neurosci. Methods, 1998, 83, 97-102. doi: 10.1016/S0165-0270(98)00066-1

71. Zimmermann T. Spectral imaging and linear unmixing in light microscopy. Microscopy Techniques. Advances in Biochemical Engineering. Ed. Rietdorf J. Springer International Publishing, Berlin. 2005, 95, 245-265. doi: 10.1007/b102216

72. Tuchin V. V. Light propagation in tissues with controlled optical properties. J. Biomed. Opt., 1997, 2, 401. doi: 10.1117/12.281502

73. Tuchin V. V. Optical Clearing of Tissues and Blood. SPIE.Digital Lbrary, 2005. doi: 10.1117/3.637760

74. Lawson M.A., McDonald M.M., Kovacic N., et al. Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nat. Commun., 2015, 6, 8983. doi: 10.1038/ncomms9983

75. Sandercock A.M., Rust S., Guillard S., et al. Identification of anti-tumour biologics using primary tumour models, 3-D phenotypic screening and image-based multi-parametric profiling. Mol. Cancer, 2015, 14, 147. doi: 10.1186/s12943-015-0415-0

76. Badder L.M., Hollins A.J., Herpers B., et al. 3D imaging of colorectal cancer organoids identifies responses to tankyrase inhibitors. PLoS One, 2020, 15, e0235319. doi: 10.1371/journal.pone.0235319

77. Chambers A.F., MacDonald I.C., Schmidt E.E., et al. Steps in tumor metastasis: new concepts from intravital videomicroscopy. Cancer Metastasis Rev., 1995, 14, 279-301. doi: 10.1007/BF00690599

78. Sipkins D.A., Wei X., Wu J.W., et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 2005, 435, 969-973. doi: 10.1038/nature03703

79. Hawkins E.D., Duarte D., Akinduro O., et al. T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature, 2016, 538, 518-522. doi: 10.1038/nature19801



GOSNIIGENETIKA-FOOTER GOSNIIGENETIKA